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1 Abstract

Neuroblastoma is the most common extra-cranial, solid, malignant tumor in children. Ad-
vances in radiology have made possible the detection and staging of the disease. Segmentation
and analysis of the tissue composition of the tumor can assist in quantitative assessment of
the response to chemotherapy and in the planning of delayed surgery for resection of the
tumor. But, due to the heterogeneous tissue composition of neuroblastoma, ranging from
low-attenuation necrosis to high-attenuation calcifications, segmentation of tumor mass is a
challenging problem. So, in attempt to segment the tumor mass directly results in severe
leakage in contiguous anatomical structure such as the heart, the liver, the kidneys and many
other organs and tissues possess CT characteristics that are similar to those of the tumoral
tissues. It has been observed that some preprocessing steps reduced the potential for leak-
age through the heart and provides an effective landmark for the identification of additional
abdominal organs. Identification of diaphragm and the pelvic girdle result in segmentation
of the abdominal cavity and removed the probability of leakage outside that region and is
expected to reduce the false positive rates in the tumor segmentation.

After removing air, fat and muscle and other peripheral artifacts and thresholding that
image I obtained a rough estimate of the pelvic girdle. By incorporating reconstruction in the
fuzzy region growing and applying differnt morphological image processing technique I was
able to get a refined model of pelvic girdle. As pelvic girdle is made up of bones, those are
supposed to have high Hounsfield unit values and high gray level values in the images. But
due to the fact that neuroblastoma is a child disease and the pelvic girdle bones may not be
fully developed (both in structural and tissue composition characteristics), in many cases, it
caused intermixing the values with other contiguous and neighboring organs and tissues of
close or same gray levels. In addition, most of the times, the pelvis bones appearred as disjoint
regions which made the task more complicated. In my project, based on fuzzy mapping and
reconstruction I have studied several detection and segmentation methods of pelvic girdle
using automatically selected seeds in the CT images.

2 Neuroblastoma

Neuroblastoma is a malignant tumor of neural crest origin that may arise anywhere along
the sympathetic ganglia or within the adrenal medulla [1, 2]. Neuroblastoma belongs to an
enigmatic group of neoplasms, which have the highest rate of spontaneous regression of all
human malignant neoplasms, yet one of the poorest outcomes when presenting as disseminated
disease in children.

Neuroblastoma is the most common extra-cranial solid malignant tumor in children; it
is the third most common malignancy of childhood, surpassed in incidence only by acute
leukemia and primary brain tumors [3]. It accounts for 8-10% of all childhood cancers, but
is responsible for 15% of all cancer-related deaths in the pediatric age group [1, 4, 5]. The
median age of incidence is two years, and 90% of the diagnosed cases are in children under
the age of five years [2]. Seven to 10 new cases per million children younger than 15 years of
age are annually diagnosed in Canada and the United States [6, 7, 8].

Sixty-five percent of neuroblastomas are located in the abdomen; approximately two-thirds
of these arise in the adrenal gland. Fifteen percent are thoracic, usually located in the sym-
pathetic ganglia of the posterior mediastinum. Between 10 and 12% of neuroblastomas are
disseminated without a known site of origin [3].
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The overall survival rate for all stages of neuroblastoma is 72% if the patient is under the
age of one year of age, 28% for children between the ages of one and two, and 12% for those
older than two years of age [3]. The improved prognosis of infants with early-stage neurob-
lastoma has prompted the initiation of infant-screening studies. Mass screenings of infants
for neuroblastoma have been studied systematically in Japan, North America, and Europe
[9]. The results of the trials have shown an increase in the detection of neuroblastoma cases;
however, despite this increased incidence in the screen group, the neuroblastoma mortality
rates were unchanged by the screening [9].

2.1 Clinical Staging

The main prognostic factors in neuroblastoma are the age of the patient and the stage of
the disease at diagnosis. The detection of neuroblastoma at an early stage of the disease
generally leads to a favorable prognosis. The site of primary involvement of neuroblastoma is
also important in the overall prognosis. Tumors arising in the abdomen and pelvis have the
worst prognosis, with adrenal tumors having the highest mortality. Thoracic neuroblastoma
has a better overall survival rate of 61%, compared to a survival rate of 20% with abdominal
tumors [3].

As with other cancers, a formal system for clinical staging of neuroblastoma is useful
for prognostication and for comparing results of treatment. The International Neuroblastoma
Staging System (INSS) [10] takes into account radiologic findings, surgical resectability, lymph
node involvement, and bone marrow involvement. Based on these criteria, the extent of the
neuroblastoma disease is classified into four main stages. Localized tumors are divided into
stages 1,2, and 3, while widespread disease in infants is divided into 2 categories, stage 4 and
4S [11].

2.2 Imaging

CT and MRI are currently the imaging modalities of choise for characterization of neuroblas-
toma. CT is essential for the confirmation, localization, and staging of neuroblastoma, whether
the tumor is abdominal, pelvic, thoracic, cervical, or intracranial in location. The sensitivity
for detection of abdominal neuroblastoma on CT is virtually 100% [7, 3]. Tumor size, loca-
tion, composition, and relationship to adjacent structures are all adequately demonstrated on
CT [7]. CT may demonstrate prevertebral tumor extension across the midline, encasement
of major vessels, invasion or displacement of the pancreas, and retrocrural extension into the
chest.

On computed tomography (CT) exams, abdominal neuroblastoma is seen as a mass of
soft tissue, commonly suprarenal or paravertebral, usually irregularly shaped, lobulated, and
lacking a capsule [3]. Calcifications are readily detectable on CT and are present in about
85% of cases of neuroblastoma. Calcifications are usually dense, amorphous, and mottled in
appearance.

MRI is well suited for the evaluation of children with neuroblastoma and probably offers
sensitivity equal to that of CT. Demonstration of vascular anatomy with MRI is usually
superior to that with CT. The tissue characterization that MRI provides presents useful
information for differentiating neoplastic disease from normal structures. Major drawbacks of
the modality include expense, long imaging time, and the usual requirement for sedation [7].
As such, CT is still the primary imaging modality.

2



In CT, the physical characteristics of tissue are displayed using a normalized unit known
as a CT number. The CT number is dependent on the linear attenuation coefficient, ρ, of a
tissue and is calculated relative to water. The tissue density is represented by a CT number,
defined in Equation 1 as:

CT number = k(ρ − ρw)/ρ. (1)

A CT number is a normalized measure of the tissue density, represented as the linear atten-
uation coefficient ρ, relative to the linear attenuation coefficient of water, ρw. The parameter
k is a scaling constant, which is set to 1000 to obtain a CT number in terms of Hounsfield
units (HUs). Several tissue types and their corresponding Hounsfield value are presented in
Table 1.

Table 1: Mean and standard deviation of common abdominal tissues in Hounsfield Units
(HU).

CT value, HU
Tissue mean SD
Air -1006 2
Fat -90 18
Bile +16 8
Kidney +32 10
Pancreas +40 14
Blood (aorta) +42 18
Muscle +44 14
Spleen +46 12
Necrosis +45 15
Liver +60 14
Viable tumor +91 25
Marrow +142 48
Calcification +345 155
Bone +1005 103

This table has been reproduced from [12].

2.3 Computer-aided Analysis

In the treatment of patients with neuroblastoma, the ultimate goal or the treatment of choice
is the complete surgical resection of the tumor mass [3]. However, due to the size or extension
of the mass, radiation therapy or chemotherapy may first be required to shrink the tumor
before resection can be performed. As such, the evaluation of the tumor mass is an important
measure of the response of the disease to therapy. In this context, computer-aided analysis in
the form of tumor segmentation can be beneficial to the radiologist, providing a quantitative,
reproducible evaluation of the tumor mass. Advances in radiology have made possible the
detection and staging of the disease. Segmentation and analysis of the tissue composition of
the tumor can assist in quantitative assessment of the response to chemotherapy and in the
planning of delayed surgery for resection of the tumor.
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3 Background

Due to the heterogeneous tissue composition of neuroblastoma, ranging from low-attenuation
necrosis to high-attenuation calcifications, segmentation of tumor mass is a challenging prob-
lem. The tumor is usually composed of inhomogeneous tissue types, some of which possess
strong similarities in computed tomographic characteristics to contiguous nontumoral tissues.
So, in attempt to segment the tumor mass directly results in severe leakage in contiguous
anatomical structure such as the heart, the liver, the kidneys and many other organs and
tissues possess CT characteristics that are similar to those of the tumoral tissues. Further-
more, viable tumor, necrosis, fibrosis, and normal tissues are often intermixed. Rather than
attempt to separate these tissue types into distinct regions, Rangayyan et al.[13] proposed
to explore methods to delineate the normal structures expected in abdominal CT images, re-
move them from further consideration, and examine the remaining parts of the images for the
tumor mass. In order to improve the segmentation result Deglint et al.[14] identified several
potential sources of leakage in the body and developed method to remove them from further
consideration. Previous work on the segmentation of the primary tumor mass by Vu et al.[15]
focused on the removal of various problematic tissues and structures prior to segmentation us-
ing different segmentation algorithms. In that work, Vu et al.[15] proposed and implemented
an improved segmentation procedure of the peripheral muscle, identification and extraction of
the diaphragm and the subsequent removal of the thoracic cavity. That preprocessing method
removed the potential for leakage through the heart and provides an effective landmark for
the identification of additional abdominal organs. Incorporating opening by reconstruction
by using region marker that work showed an excellent result in terms of average true positive
rate (82.2%) but had a poor result in terms of average false positive rate (1281.6%)[15] due
to leakage in other abdominal tissues and organs.

So, in addition, the identification and segmentation of pelvic girdle will result in the ab-
dominal cavity between the diaphragm and the pelvis and is expected to reduce the probability
of leakage and the high false positive rates in the region growing method.

4 Image Segmentation

Digital images may be manipulated in a variety of ways for many applications.The different
manipulations can be categorized as image processing and image analysis. Segmentation, a
form of image processing, is the process of partitioning an image into regions representing
the different objects in the image. Segmentation of objects, especially in medical images is
a difficult task. Generally, boundaries of the desired objects on surrounding features in an
image are subtle, or region corresponding to the objects of interest lack a sufficient level of
similarity to achieve accurate segmentation. Besides the same object may be represented by a
group of disjoint regions with varying characteristics. Futhermore, noise and artifacts degrade
the image and interfere with object definition.

A number of segmentation techniques are used in this project to obtain the pelvis and are
presented here in brief.

4.1 Thresholding

Gray level thresholding segments an image based on the image’s value at each point (x, y)
relative to a threshold value, T . It is the simplest method of image segmentation relying only
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on the point values of the pixels. A threshold can be global or local. In the simplest case of
thresholding, also known as binarization, a single threshold is specified for an image f(x, y)
and the result is defined as [16]

g(x, y) =

{
1 if f(x, y) > T
0 if f(x, y) ≤ T

(2)

where T ǫ G.
Thresholding requires knowledge of the expected gray levels of the objects of interest and

the background, in order to be effective. In many cases, several objects of interest may possess
different gray-scale values, requiring the use of multiple thresholds to achieve their individual
segmentation. The approach is known as multi thresholding. Still, selection of appropriate
threshold is a difficult task and that selection need to be made adaptive sometimes for better
result. In the case of CT images, several organs within the body have similar characteristics
(see table 1 ), and thresholding may fail to yield the individual structures.

4.2 Region Growing

Region based segmentation makes use of spatial information: methods in this category rely
on the posthulate that neighboring pixels within a region have similar characteristics. The
ultimate goal of segmentation is to group pixels (or voxels) into regions, such that the resulted
objects are homogeneous, consisting of pixels corresponding to the same true object. Such
methods may be based on either a measure of similarity or discontinuity between a pixel and
its neighborhood.

Region-growing is a segmentation procedure in which the desired objected is delineated
by the successive aggregation of voxels that satisfy a given inclusion or homogeneity criterion
and that are connected to the current estimate spatially. This homogeneity criterion should
be selected such that it is broad enough to include the desired regions, but strict enough to
ignore dissimilar regions. The assumption used to govern such a procedure is that the desired
region is homogeneous, consisting of similar values. Therefore, because of the homogeneity of
the region, a region-growing procedure is quite suitable. By convention, there are two primary
types of neighborhoods for a 2-D image: 4-connected and 8 connected and for a 3-D image:
6-connected and 26-connected are widely used.

The major limitations of region growing are the difficulty in specifying seed pixels that
properly represent the characteristics of the regions of interest, in defining suitable inclusion
criteria for aggregating pixels and formulation of a stopping rule. In the case of segmentation
of pelvic girdle, region growing may leak to neighboring structures that possess similar CT
characteristics.

4.3 Fuzzy Segmentation

Traditional methods of segmentation, such as thresholding and region growing, aim to partion
an image in a “crisp” manner. That is, the image is divided into regions that are either
absolutely part of the region of inerest or not. Such an approach of “all or nothing” is
effective only when the objects are clearly defined. In images, where the object boundaries
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are ill-defined as in medical images, the structure of such methods need to be made more
flexible. Fuzzy sets are a logical choice for such imprecision because they serve as a natural
framework for the purpose of segmentation.

A fuzzy set A is represented by a membership function mA which maps numbers into the
entire unit interval [0, 1].The value mA(r) is called the grade of membership of r in A. This
function has three properties of normality, monotonicity and symmetry. The unnormalized
gaussian function, defined as

mA(r) = exp{−(r − µ)2/2σ2}

(3)

is such an membership function satisfying the properties above.
In the context of image segmentation, fuzzy sets provide a very powerful tool. It could

be used to quantify the similarity of image elements to the objects of interest. Using the
mapping function in equation 3, the desired structures will appear as bright regions of high
membership values, whereas the undesired structures will be faint, possessing a low degree
of similarity or membership. The membership function operates globally; it identifies all
elements of the image that demonstrate the characteristics of the object of interest. As a
result several potential candidates may arise for the desired objects.

4.3.1 Fuzzy Connectivity

A method that employs the concept of fuzzy connectedness has been introduced in [17].
This method examines not only the homogeneity of neighboring pixels, but also the notion
of “hanging togetherness” of image elements, to capture voxels that are located in different
spatial regions. The aim is to capture the properties of graded composition and hanging
togetherness within the notion of a “fuzzy object” [17].

The connectedness between two points c and d is a function of all possible paths connecting
the two points. Each path is formed by a sequence of links between successive adjacent points
in the path. The strength of each link is simply the affinity between the two adjacent points
in the link and the strength of each path is the weakest link along the path. The strength
of the connection between point c and d is called connectivity, and is given by the strongest
path over all possible paths between the points, c and d.

Bloch [18] described the degree of connectedness between two arbitrary points c and d of
a fuzzy set characterized by the fuzzy membership µ to be:

ηµ(c, d) = max
pǫPcd

[ min
1≤i≤n

µ(ci)] (4)

For two arbitrary points c and d, ci, 1 ≤ i ≤ n represents the successive adjacent elements
in a path joining the two points. Therefore, c = c1 and d = cn.

In the project, I have applied morphological reconstruction method in lieu of fuzzy con-
nectivity to the image mapped using the fuzzy membership function.
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4.4 Morphological Technique

Mathmatical morphology [19, 20] refers to a branch of nonlinear image processing that fo-
cuses on the analysis of geometrical structures within an image. It is based on conventional
set theory, which serves as a framework for image processing and analysis. In addition to
image segmentation, morphology provides methods for image enhancement, restoration, edge
detection , texture analysis and shape analysis. It is based on analyzing the effects of applying
a geometric form known as structuring element to the given image and the goal is to probe
the image with that structuring element and quantify the manner in which the structuring
element fits or does not fit within the image.

Two fundamental morphological operations are erosion and dilation [21] which are based
on Minkowski algebra [19, 20]. Several additional secondary operations such as opening and
closing, are made possible by combining the elementary operators sequentially.

4.4.1 Erosion

The translation invariant erosion operation is known as Minkowski subtraction in set theory
[19, 21], and is defined as

F ⊖ B = {hǫRn | (B + h) ⊆ F} =
⋂

bǫB

F − b (5)

where F and B are subsets of R
n, B is the structuring element for the purpose of eroding

F , and h is an element of the set of all possible translations. For digitized image, F and B
are subsets of Z

n and h ǫ R
n. In terms of set theory, F ⊖ B is formed by translating F by

every element in B and taking the intersection of the results obtained.
Logically, the procedure works as follows: The value of the output pixel is the minimum

value of all the pixels in the input pixel’s neighborhood defined by the structuring element.
In a binary image, if any of the pixels is set to 0 within the neighborhood, the output pixel is
set to 0. So, the operation has the effect of “shrinking” the original object according to the
structing element when the structuring element contains the origin.

4.4.2 Dilation

The translation invariant dilation operation is known as Minkowski addition in set theory
[19, 21], and is defined as

F ⊕ B = {hǫRn | (B̆ + h)
⋂

F 6= φ} =
⋂

bǫB

F + b (6)

where B̆ = −b | bǫB is the reflection of B with respect to the origin φ is the null set. In
terms of set theory, a dilation is the union of all copies of F translated by every element in
B. So, logically, the value of the output pixel is the maximum value of all the pixels in the
input pixel’s neighborhood defined by the structuring element. In a binary image, if any of
the pixels is set to the value 1, the output pixel is set to 1. The dilation has the effect of
“expanding” the original object when the structuring element contains the origin.
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4.4.3 Morphological Opening and Morphological closing

Morphological opening and closing are achived by the sequential applications of erosion and
dilation. Morphological opening is obtained by applying an erosion followed by a dilation as,

F ◦ B = (F ⊖ B) ⊕ B (7)

On the otherhand, morphological closing is achived by applying a dilation followed by an
erosion as,

F • B = (F ⊕ B) ⊖ B (8)

Opening has the effect of removing objects or details smaller than the structuring element
B, while smoothing the edges of the remaining objects. It also disconnects objects that are
connected by branches that are smaller than the structuring element.

On the otherhand, closing has the effect of filling in holes and intrusions that are amaller
than the structuring element.

4.4.4 Reconstruction

“Reconstruction” is an operation provided by mathematical morphology that is useful in
evaluating the connectivity of objects in an image. This is an iterative procedure that can
extract regions of interest from an image identified or selected by a set of “markers” in the
image. Reconstruction operates on the notion of connection cost, or the minimum distance
between specific poits in a defined set.

The reconstruction transformation simply extracts the connected components of an image
which are “marked” by another image [22]. It can be seen as a series of geodesic dilations of

a marker, J, constrained by a mask, I [22]. The elementary geodesic dilation of δ
(1)
I (J) of a

binary image J ≤ I under I is defined as

δ
(1)
I (J) = (J � B) ∧ I. (9)

In equation 9, ∧ represents the pointwise minimum and (J � B) is the dilation of J using
a flat structuring element B.

The definition of binary reconstruction can be extended to grayscale images. The grayscale
geodesic dilation of size n ≥ 0 is then given by

δ
(n)
I = δ

(1)
I ◦ δ

(1)
I ◦ · · · ◦ δ

(1)
I (J)

︸ ︷︷ ︸

n!times

. (10)

The grayscale reconstruction of I from J, denoted as ρI(J), is obtained by dilating J,
constrained by the mask I [22], which is formally defined as:

ρI(J) =
∨

n≥1

δ
(n)
I (J). (11)

Using these image processing techniques I have tried to detect and segment the pelvic
girdle in CT images.
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5 Preprocessing Steps

Before getting into the original project work I have applied the preprocessing steps proposed
by Vu et al. [15] and eliminated air, fat, skin and peripheral muscle from further consideration.
In addition, I have used the the method proposed by Rangayyan and Deglint [13] to extract
the spinal canal region which is used in the project to assist automatic seed selection.

5.1 Removal of Air

Air, by definition, has a CT number of -1000 HU. To remove air external to the body, the
CT volume is thresholded with the range -1200 to 5 HU to account for variations due to noise
and partial volume averaging. 2-D binary reconstruction using an 4-connected neighborhood
is applied to each slice of CT volume where the four corner pixels of each slice are used as the
markers and each thresholded slice is used as mask. After completion of reconstruction, the
resulted volume is morphologically closed using a ‘disk’ type structuring element of radius 10
to remove material external to the body, such as patient table, blanket and tubes connected
to intravnous drips.

5.2 Removal of Skin and Fat

The skin has a usual thickness of one to three millimeters. Using the parameter for expected
skin thickness, the boundary of the body obtained via segmentation of air region was shrunk
using 3D morphological operation to remove skin.

The fat has a CT value of µ = −90 HU and σ = 18 [23, 24]. Peripheral fat around the
abdomen varies in thickness from 3 mm to 8 mm in children. Following the removal of skin,
voxels within a distance of 8 mm from the inner skin boundary are examined for inclusion as
fat. If these voxels fall within the range of −90 ± 3 × 18HU, they are clasified as fat. In this
procedure, partial volume averaging has been taken into account.

The regions of partial volume effect are calculated based on the lowest and highest value
parameters, which determine the range of values that are particular to the partial volume
effect. Within a 5x5 window, the max and min are calculated and if they are above threshold,
then the center pixel is compared against the lowest and highest values to see if it is within
the range that we’re interested in.

5.3 Removal of Peripheral Muscle

Peripheral muscle has a mean CT value of µ = +44HU and σ = 14HU [23, 24] and a varying
thickness of 6 mm to 10 mm in abdominal sections. As in case of peripheral fat, voxels found
within 10 mm of the inner fat boundary and within the range of 44± 2× 14 HU are classified
as peripheral musle.

5.4 Detection of Spine

The method proposed by Rangayyan and Deglint [13] was employed to obtain the spinal
canal. After removal of external and peripheral material, the CT volume was thresholded[15]
at +800 − 2 × 103HUto obtain binarized bone volume. The data volume was then cropped
to remove CT slices containing the head, neck and pelvis for consideration and to consider
the vertibral column in the thoracic and abdominal column only. The cropped and binarized
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bone volume was subjected to a 3D derivative operation to extract the edge map representing
the bone boundary. The Hough transform was then applied to the edge map with the radius
parameter limited to the range 6 to 10 mm. To make certain the appropriate circle is identified,
the center voxel of the best fitting circle was examined to ensure that it was located within
the spinal canal. After determining the appropriate center, the reconstruction technique was
applied in 3D to delineate the spinal canal. Subsequently, the fuzzy region was thresholded at
T=0.80 and the region was morphologically closed in 3D using a tubular structuring element
of size 2mm × 2mm × 5mm.

Different morphological techniques, fuzzy mapping and reconstruction have been used
extensively in the preprocessing steps described above. For the present project work, I have
not used the seed selection procedure for spinal canal described earlier. Rather, I have used
the selected seed points previously obtained by that method to grow the spinal canal region.
The rest other preprocessing steps were implemented as indispensable part of the project
following the described procedure by Vu et al.[15].

The result of the preprocessing steps are shown in figure 1. Only one slice is shown as a
representative case.

6 Pelvic Girdle Detection and Segmentation

I have studied different detection and segmentation methods of pelvic girdle in the CT images
by thresholding the resulted images after removing air, fat and muscle and other peripheral
artifacts. Using that thresholded images I have tried to incorporate reconstruction in the
preprocessed CT slices to segment the pelvic girdle. As pelvic girdle is made up of bones,
those are supposed to have high Hounsfield unit values and high gray level values in the images.
But due to the fact that neuroblastoma is a child disease and the pelvic girdle bones may not
be fully developed (both in structural and tissue composition characteristics) in many cases,
there is a high possibility of intermixing the values with other contiguous and neighboring
organs and tissues of close or same gray levels. In my project, I have searched for appropriate
and effetive algorithms to detect and segment the pelvic girdle in CT images with a view to
improve the segmentation of Neuroblastoma tumor mass in terms of reducing false positive
rates.

The CT exams used in this work are anonymous cases from the Alberta Children’s Hospital.
The 10 exams are of four patients of age two weeks to 11 years with varying number of slices.
The exams were acquired using GE Medical System Lightspeed QX/i or a QX/i Plus heical
CT scanner. Almost all the CT exams include contrast enhancement. The data have an
interslice resolution of 5 mm and the intraslice resolution varies from 0.35 mm to 0.55 mm.
The computer used to process the exams is a Dell Precision PWS490 with Intel(R) Xeon(TM)
3.00 GHz processor and 4 GB of RAM.

6.1 Seed Selection

The detected spinal canal region was used as a mean of seed selection. The last slice that
contains the spinal canal region was taken as reference slice number and the seeds were selected
from 2 slice back from that slice number. The reson for choosing that slice is that it was found
to be a good position to select the seeds for pelvis for all the CT exams.

At first, the resulting image after removing air, skin, fat and muscle was thresholded at
300 HU value. In case of two seeds application, for a 512× 512 CT image, the searching area
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) A 512 × 512 CT slice of a patient. Only one cross section is shown from an
exam with 75 slices. (b)External air and artifacts(shown in black). (c) The peripheral skin.
(d) The peripheral fat region. (e) The pheripheral muscle region. (f) The spinal canal region
detected and removed.

for the left part of pelvic girdle was defined within 100−200 in X-axis direction and 250−350
in Y-axis direction in the thresholded image. And for the right part of the pelvic girdle, it was
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defined within 350 − 450 in X-axis direction and the 250 − 350 in the Y-axis direction. The
pixel that corresponds to 1 in the thresholded image and also very close to approximate mean
value of 350 in the original image was taken as seed pixel. Though, there are some “magic
numbers” here but for all the CT images the parts of the pelvic girdle was found within that
region and the algorithm successfully been able to determine the seed pixels as expected.

For the case of three seed pixels, where the third one lies on the lower spine in the CT
slice, was determined using the detected spinal canal mask. The center point (or the mean
pixel) of the spinal canal mask in the same CT slice was determined and from that point I
searched 30 pixels back in the Y-axis direction to get a seed on spine. This method also was
able to determine an appropriate seed for spine for all the cases.

6.2 Methods Studied

I have used two appoaches two get the pelvic girdle: one with automatically selected seeds,
fuzzy mapping and applying reconstruction along with other morphological processing and
the second one is taking the fuzzy mapped air region as mask and eroding that region with a
disk type structuring of radius 10 pixels used as a marker for reconstruction.

I have tested 4 similar procedures for the first approach depending on the number of seeds
and application of region growing. The methods are described below.For all the images the
upper 55% slices were not considered.

6.2.1 Method I

I have used 2 seeds simultaneously to get the right and left parts of pelvic girdle. The pre-
processed image was mapped using the Equation 3 with an average mean value of 400 and
average standard deviation of 120. These values were determined using a roughly estimated
pelvic mask including bones and bone-marrows and for all the CT exams these values were
found to be very close to the estimated value. Then using these seeds as point markers the
reconstruction was applied with 26-connected neighborhood. Then the image was morpholog-
ically closed using a ‘disk’ type structuring element of radius 10 pixels and thresholded within
the range 100 to 1200 HU. Then the binary image was dilated to fill the ‘holes’ using the same
type of structuring elemnet of radius 3 pixels.

6.2.2 Method II

This method differs from the previous one in a manner that the seeds were used separately to
do the reconstruction and then the obtained result was added to get the mask for right and left
portions of the pelvis. The image was morphologically closed and dilated. After thresholding
the binarized image was searched for the largest portion (labeling) and the resulted volume
was closed again and thinned to get the mask for Pelvis. The structuring elements used for
different morphological opearion were of disk type with a radius varying from 1 to 5 pixels
depending on necessity.

The reason for labelling and finding largest region here is, when two separate results of
region growing are merged, both the parts get connected somehow and I was not able to
separate them without making any loss to the image of actual pelvis. So, I needed to take the
opposite approach which in turns proved to be very optimistic about the pelvis boundary.
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6.2.3 Method III

This method was implemented using 3 seeds simultaneously. The fuzzy mapped region was
reconstructed with 26-connedted neighborhood using those seed points as marker. The re-
constructed image was closed, dilated and labelled to find the maximum connected volume.
Then the resulted mask was morphologically closed, filled and thinned to get the refined Pelvis
mask.

6.2.4 Method IV

This method is same as Method II except 3 seeds are used to do the reconstruction separately.
Following the same procedure of closing, dilation, thresholding, labelling and thinning the
pelvic girdle mask was obtained.

6.2.5 Method V

In this method I have taken different approach which is little bit similar to “closing by recon-

struction”. The fuzzy mapped air region was taken as the mask and that image eroded with
a disk of radius 10 pixels was used as marker to perform the reconstruction with 6-connected
neighborhood. The resulted image was inverted and closed by a disk of radius of 3 pixels.
Then the image was eroded with the same structuring element to get a finer result.

7 Results

Based on the previously described methods some representative results are presented in Figures
2,3 and 4. Method-I is the simplest of all methods described here and it takes the lowest time
to produce the output. This method has less leakage probabilty to other lower abdominal
organs and produces very good result as seen in part (b) of 2. Another positive feature
for this method is that it is designed to segment the two sides of the pelvic girdle though
sometimes it includes the spine also. The disadvantage of this method is that it sometimes
fails to produce good output at the lower end of the pelvis which is evident in part (b) of 4.

Method-II is designed such a way that it produces highly optimistic result about the
pelvis. The inclusion of dilation is needed to get the maximum connected regions which has
the negative effect of producing greater area for pelvis and also it produces huge leakage in
abdominal structures of similar CT value (see part (c) of Figure 3). This method takes almost
double time than the first method though it produces better estimation about the lower parts
of pelvis.

Method-III produces similar output as in method-I with increased computational com-
plexity and it also sometimes misses some lower parts of pelvis(see part (d) of Figure 4).
And it has little higher probability of leakage and less possibility of missing lower parts than
Method-I. The computation time is less than method-II but higher than method-I.

Method-IV is another optimistic representation which takes the highest time to produce
output. It produces better estimation of the lower part compared to the previous three
procedures and less likely to miss any parts. But it has very high possibility of leakage as in
method-II.

Method-V results in good representation of pelvis and it also does not miss lower disjoint
parts very often. The inclusion of other structures is highly possible if those contiguous
structures have the close CT value. As it performs global operation similar to closing by
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reconstruction, the upper threshold for air regions need to be manually adjusted (in between
40 to 180) to get a good result. Otherwise, for low contrast and small pelvic girdle region, the
algorithm produces no meaningful output. The computaion time is as less as method-I.

The two major problems I have encountered in the project are the disjoint characteristics
of the pelvis parts and similar CT characteristics of the neighboring regions. The inclusion
of spine in the segmentation procedure is essential in many cases to get the lower portion of
the pelvic girdle and to include the disjoint bones that belong to the pelvic girdle. But, that
spine get connected most of the times to other organs and is one of the major reasons for high
leakage during segmentation. Due to inclusion of contrast material in the abdominal organs,
some of the structures show higher HU value than the normal. Due to noise and poor image
quality and also for wanting to include the bone-marrows in the result to obtain a complete
model of the pelvic girdle, result in poor representation by introducing high leakage.

Though it shouldn’t cause much problem in region growing of bones directly, but those
high contrast areas get connected to the low contrast pelvis regions and increase errors. Those
problematic structures could be eliminated from the result by disconnecting from the pelvis
region using erosion operation but it will cause the loss of pelvis parts also in the output. So,
I had to make a compromise between these two criteria to obtain a good result.

8 Conclusion

The basic need for pelvic girdle detection fare to get the lower boundary of abdomen and
remove all data below that region so that we will have only the segmented abdominal cavity
to consider for region growing in the case of neuroblastoma. It has been observed that the
region growing using fuzzy connectivity or opening by reconstruction leaks into some lower
abdominal region in several cases giving rise to high false positive rates.

So, for the purpose of futher work in that field, only the upper surface region of the
pelvic girdle is necessary. In that case, either Method-I or Method-III will be the best choice
for implementaion in terms of producing a reliable result along with reduced computational
complexity and time. Method-V also has some promising features but need to be refined for
more reliable output.

Another thing about this project worth mentioning here that all the analysis are done in
a subjective way. If there had been the accurate boundary defined by an expert radilogist or
“ground truth” to compare the result with, it could be possible to make the analysis quantitive
or more objective.

The automatic seed selection is a positive side for this study though that procedure still
need to be made more reliable and logical for more number of CT exams. The only user
input of these described methods is to select the upper bound of CT slices to consider for
pelvic girdle. Though in this work, the upper 55% slices were removed before consideration,
methods other than method-I starts to leak in the upper abdomen. To eliminate this problem,
a manual upper bound (slice number) was defined by examining the slices to restrict the region
growing. For this, selection of the upper limit of the considerable slices is need to be refined
before starting pelvis segmenatation. The slice where the upper pelvic girdle starts to appear
can be used to constraint the consideration.

Though method-I was found to be adequate to serve the purpose, other methods are also
studied to find a complete representation of the whole pelvic girdle. In this purpose, other
methods are extensively explored and compared to the method-I. In addition, the project
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(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) A 512 × 512 CT slice after removal of air, skin, fat and muscle. Only one cross
section is shown from an exam with 75 slices. (b) Mask obtained by Method-I; (c) Mask
obtained by Method-II; (d) Mask obtained by Method-III; (e) Mask obtained by Method-IV;
(f)Mask obtained by Method-V.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) A 512 × 512 CT slice after removal of air, skin, fat and muscle. Only one cross
section is shown from an exam with 71 slices. (b) Mask obtained by Method-I; (c) Mask
obtained by Method-II; (d) Mask obtained by Method-III; (e) Mask obtained by Method-IV;
(f)Mask obtained by Method-V.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) A 512 × 512 CT slice after removal of air, skin, fat and muscle. Only one cross
section is shown from an exam with 75 slices. (b) Mask obtained by Method-I; (c) Mask
obtained by Method-II; (d) Mask obtained by Method-III; (e) Mask obtained by Method-IV;
(f)Mask obtained by Method-V
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(a)

(b)

Figure 5: Two representative cases in 3D (top view)(a) Pelvis surface obtained by method-I;
(b) Pelvis surface obtained with method-IV.
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was formed in a manner with a view to set up an initial learning point of biomedical image
processing for myself and building up a good background for future work in this field.

9 Future Work

My future aims related to this project are:
* To refine the method of pelvic girdle detection and segmentation.
* To implement simultaneous and competitive region growing method to segment the

primary tumor mass in neuroblastoma.
* To determine the tissue composition in the tumor mass using Gaussian Mixture model
* To find a more reliable and successful algorithm for the segmentation of neuroblastoma

using more imaging modalities including µmeter resolution CT images.
* To extend the study for other abdominal cancers like Wilm’s tumor etc.
* To try to find a complete automated procedure of segmentation of abdominal tumors.
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Y Tsuchida, and P A Voûte. Revisions of the international criteria for neuroblastoma
diagnosis, staging, and response to treatment. Journal of Clinical Oncology, 11(8):1466–
1477, August 1993.

[11] B H Kushner. Neuroblastoma: A disease requiring a multidude of imaging studies.
Journal of Nuclear Medicine, 45:101–105, July 2004.

[12] F J Ayres, M K Zuffo, R M Rangayyan, G S Boag, V Odone Filho, and M Valente.
Estimation of the tissue composition of the tumor mass in neuroblastoma using segmented
CT images. Medical and Biological Engineering and Computing, 42:366–377, 2004.

[13] Rangaraj M. Rangayyan H.J. Deglint and G.S. Boag. Three-dimensional segmentation
of the tumor mass in computed tomographic images of neuroblastoma. Proceedings of

the SPIE Intenational Symposium on Medical Imaging: Image Processing, 5370(3):475–
483(2004), May 2004.

20



[14] H.J. Deglint. Image processing algorithm for three-dimensional segmentation of the tumor
mass in computed tomographic images of neuroblastoma. Master’s thesis, University of
Calgary, August 2004.

[15] Randy Hoang Vu. Strategies for three-dimensional segmentation of the primary tumor
mass in computed tomographic images of neuroblastoma. Master’s thesis, University of
Calgary, July 2006.

[16] P K Sahoo, S Soltani, A K C Wong, and Y C Chen. A survey of thresholding techniques.
Computer Vision, Graphics, and Image Processing, 41:233–260, 1988.

[17] J K Udupa and S Samarasekera. Fuzzy connectedness and object definition: Theory, algo-
rithms, and applications in image segmentation. Graphical Models and Image Processing,
58(3):246–261, 1996.

[18] I Bloch. Fuzzy connectivity and mathematical morphology. Pattern Recognition Letters,
14:483–488, 1993.

[19] C R Giardina. Morphological Methods in Image and Signal Processing. Prentice Hall,
Englewood Cliffs, NJ, 1988.

[20] E R Dougherty. An Introduction to Morphological Image Processing. SPIE Press, Belling-
ham, WA, 1992.

[21] J Goutsias and S Batman. Morphological methods for biomedical image analysis. In
M Sonka and J M Fitzpatrick, editors, Handbook of Medical Imaging, Volume 2: Medical

Image Processing and Analysis, pages 175–272. SPIE Press, Bellingham, WA, 2000.

[22] L Vincent. Morphological grayscale reconstruction in image analysis: Applications and
efficient algorithms. IEEE Transactions on Image Processing, 2(2):176–201, 1993.

[23] V C Mategrano, J Petasnick, J Clark, A C Bin, and R Weinstein. Attenuation values in
computed tomography of the abdomen. Radiology, 125:135–140, October 1977.

[24] M E Phelps, E J Hoffman, and M M Ter-Pogossian. Attenuation coefficients of various
body tissues, fluids and lesions at photon energies of 18 to 136 keV. Radiology, 117:573–
583, December 1975.

21


