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1 Introduction

We have developed a MATLAB application that detects instances of vocal vibrato from input
digital audio files. The program performs vibrato detection using digital image processing
and analysis methods in two dimensional time-frequency plane representations of the audio
files. Detection of vibrato entails ascertaining values for a pre-defined collection of parameters
that we deem appropriate to describe the physiologic phenomenon.

We begin with some basic background on vibrato and vocal formants. Knowledge of these
two aspects of the voice is required to understand our choice of algorithms. We also give an
introduction to time-frequency analysis using the spectrogram. This is followed by theoretical
and implementation-specific details of the program’s components. We show results of the
program on both representative synthetic data and on actual data collected from opera
singers.

1.1 Vibrato

Vocal coach David Jones defines vocal vibrato as a “slight variation of pitch resulting from
the free oscillation of the vocal cords” [1]. It is detected audibly when listening to trained
opera singers as a cyclic variation (or modulation) in pitch about the fundamental frequency
of a note with time. Vibrato is also manifested as a modulation of upper harmonic frequencies
(called “partials”) [2]. The frequency modulation of vibrato is described in [2, 3] by four
major characteristics: rate, extent, regularity, and waveform. Rate and extent correspond
to the modulation waveform’s frequency and amplitude, respectively. Regularity describes
the uniformity of frequency modulation with time, and it increases with level of training
for opera singers. Mathematically, we model vibrato frequency modulation as a sinusoidal
waveform [3].

Though it is a not a well understood phenomonon, vibrato is known to result from a combi-
nation of physiologic factors during singing, including the opening and closing of the pharynx
and vocal cords, sub-glottic breath pressure, and the actions of the singer’s muscles [1, 4, 5].
In western opera singing, vibrato production appears to be mainly due to pulsating con-
tractions of the cricothyroid muscle. Vibrato that is often heard in popular singing and in
singing by oriental cultures seems to be caused by pulsation of the subglottal pressure [5].

Vibrato is generally considered to be the result of unconscious effort by well trained singers [4].
A recent study confirmed the important role of the auditory feedback control loop—termed
pitch-shift reflex—in vibrato production and regulation [6]. This is in opposition to con-
sciously modulating one’s pitch, as in a vocal trilling or by pulsation of the diaphragm.
Figure 1 illustrates the variation in fundamental frequency about the mean with straight
tone, vibrato tone, and trilling in singing.

Vibrato rate varies greatly among singers due to a number of factors, including level of
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Figure 1: Examples of fundamental frequency Fj and amplitude variation during straight
tone, vibrato, trill, and trillo singing [5]

training, age, personal health, musical style, and cultural preferences [5]. As described in
[1], however, it can be broadly categorized as being correctly and incorrectly executed. The
following are characteristics of the latter group:

e Wobble — a wide and slow vibrato; usually a trait of older singers that is caused by
lack of resistance to breath pressure.

e Overly fast — a tremor usually caused by tongue or body stiffness, improper adduction
of the cords, or lack of breath support.

e Straight tone — a lack of vibrato; usually due to excessive and intentional pressure at
the glottis.

Sundberg’s treatise on singing [7] states that the rate of frequency modulation is constant for
a given singer. However, a comprehensive study [2] revealed that the rate tends to increase
by about 13% towards the end of a tone. Also, the inter-tone rate variation varied by £10%
about the mean rate for a given singer. The mean vibrato rate among the professional singers
tested in the study was 6.1 Hz, with an inter-singer variation of £10%. In the realm of opera
singing, it is generally accepted that vibrato has a rate roughly within this range [5]. And
for a trained singer, the rate should remain fairly constant—as per Sundberg’s statement—
regardless of pitch and volume.

Vibrato extent (modulation amplitude) is not so easily characterized, as it is a function of the
particular vocal harmonic (or formant) under consideration. Analyzing only the fundamental
harmonic of 10 professional singers singing at 25 pitches each, it was found that individual
vibrato extent varied between 434 cent and £123 cent (where +100 cent corresponds to
one semitone of variation) [8]. A range of +71 cent was found about the mean across all



singers and pitches. Extent tends to increase with vocal loudness. One study showed the
extent of one singer’s vibrato to increase from 460 cent in pianissimo singing to £100 cent
at fortissimo. We note that there are very complex interactions between the factors of rate,
extent, and regularity.

1.2 Vocal Formants

Figure 2 below shows the time-frequency spectral distribution for a tenor singing an ascend-
ing A-flat major scale on an “ah” vowel. The fundamental frequency of the first note is
approximately 208 Hz; that of the last note is approximately 415 Hz. The vibrato is clearly
visible as periodic oscillations in frequency of the pitch.

Power spectrogram of tenor singing A-flat Major scale on "ah" vowel (Hann window: n = 768, Fs =22,050 Hz)
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Figure 2: Spectrogram of a tenor singing an ascending A-flat major scale on an “ah” vowel

Formants are the relatively large peaks in the frequency spectrum of a voice that result
from resonance within the vocal tract, which is often abstracted as a sound filter [5, 9].
The frequency spectrum of the vocal tract depends on these formant frequencies. Partial
frequencies near the formants are stronger than other partials. Since formant frequencies
depend on vocal tract shape, it is implied that they will be modulated if vibrato also involves
modifications of the vocal tract.

In singing, as in speech, different formants characterize different vowel sounds. A trained
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operatic voice contains more higher frequency formants than an ordinary speaking voice.
Most opera singing has a distinctive strong formant around 3 kHz, often referred to as
the singer’s formant or the third formant (because it is usually the third major spectrum
peak), which is not present in ordinary speech [3]. A fourth formant (above the frequency
of the third) is occasionally also present. Figure 3 compares the frequency distribution of
an operatic tenor voice with that of ordinary speech and an orchestra. The spectrogram in
Fig. 4 shows how the formants of an operatic baritone vary with vowel sound.
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Figure 3: Comparison of operatic tenor’s vocal spectrum with speech and orchestra [7]
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Figure 4: Spectrogram showing formant variation with vowel sound [9]

A formal discussion on formants would be too lengthy to discuss in this space. It suffices to
say that for any given voiced pitch with some fundamental frequency Fjp, its harmonics at
integer multiples n - Fj will also be present to some degree. The most significant peaks



among these are called the formants. As noted earlier, vibrato amplitude varies with the
harmonic being analyzed in a voice. This is evident from Fig. 2. However, as an approximate
rule, the amplitude of vibrato centred at frequency f is a fixed percentage of f.

2 Method

Vibrato is marked by a variation of frequency with time in a one-dimensional signal. Hence,
it is logical to perform vibrato detection in the time-frequency domain of the non-stationary
signal. And since the magnitude of a time-frequency domain representation (called the spec-
trogram) of a signal can be treated as an image, image processing and analysis techniques are
at our disposal in this domain. In particular, we note that vibrato appears as approximately
sinusoidally varying high power bands in the spectrogram.

The purpose of our program is to determine the vibrato rate, the vibrato extent, and the sig-
nificant formants in a singer’s voice. We note that the vibrato extent is a function of formant
frequency. Our program incorporates four major components that operate in succession:

1. Short-Time Fourier Transform — transform the sampled voice signal into a time-
frequency (spectrogram) representation;

2. Contrast enhancement and edge detection — enhance the appearance of the vibrato
in the spectrogram,;

3. Hough-Radon Transform — detect sinusoids in the spectrogram;
4. Thresholding and clustering — detect and categorize features in the Hough-Radon

domain.

We proceed to investigate each of these steps at a lower level of abstraction.

2.1 Time-Frequency Representation: Short-Time Fourier Trans-
form

There are many transforms that take a 1-D signal z(¢) to a 2-D time-frequency distribution
representation TF D, (t,w). Several important critera that these transforms should satisfy
are given in [10]. Comprehensive reviews of time-frequency distributions and analysis are
presented in [11, 12].

We use the Short-Time Fourier Transform (STFT) as the basis for our time-frequency analy-
sis. The STF'T is generated by applying the Fourier Transform to a sequence of windowed



signal segments. For a time signal x(t) it is defined as

STFT(t,w) = / z(T)w(r — t)e ¥ dr, (1)
where w denotes frequency and w(t) is the chosen windowing function, which we choose
to be a Hanning function. The purpose of the windowing function is to break z(¢) into
quasi-stationary segments. Computationally, a Hanning window w(k) of width K samples
is defined as

1 1 2rk
k] ==-——- k=0,...,K—1. 2
uli =5 - 5-cos (27 ). k=0, 2)
Following [13], the STFT is implemented discretely by computing the Fast Fourier Transform
of overlapping windowed signal segments. The £*® windowed segment of the discretized signal
z(n),n=0,...,N—1,is

zp(n) =z(n) -wn—kP), k=0,...,.M—1, (3)

where P is the number of samples to overlap adjacent windows. The number of overlapping
segments to be Fourier transformed is M = | (N — P)/(K — P)]. In our implementation, we
choose the window length K = N/2 in order to maintain a certain degree of continuity in the
STFT. In this case, the overlapped Hanning windows possess the property of summing to
unity (they form a partition of unity). Though not important for our purposes, this property
leads to the invertibility of the STFT.

It is crucial to correctly choose the window length K [13]. The length must be small enough
to ensure that the windowed signal is relatively stationary, but long enough to provide
sufficient frequency bandwidth for analysis. A short (long) window provides good (poor)
time localization, but poor (good) frequency resolution. Resolution in the time-frequency
plane is limited by the uncertainty principle [13]:

At-Aw >1/2, (4)

where At and Aw are the time extent (duration) and frequency extent (bandwidth) of x(t)
and its Fourier transform, respectively. Both time and frequency resolution cannot be made
arbitrarily high simultaneously. In practice, we find that window lengths of between 512 and
1024 samples are optimal for our test signals, which are sampled at 22,050 Hz.

Figure 5 shows the spectrograms of the tenor’s A-flat major ascending scale using four
different window widths. Note that tradeoffs in both time and frequency resolutions as
window width varies.

2.2 Time-Frequency Vibrato Enhancement

Let us clarify the rather vague statement of this step of the program. It is apparent from
Fig. 2 that each sinusoidal vibrato signal is spread in the time-frequency plane. The sinusoids
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Figure 5: Spectrogram of tenor scale using Hanning windows of size (a) 256, (b) 512, (c)
1024, (d) 2048



have finite area with associated thicknesses: they are not ideal thin curves. This is a result
of both the inherent resolution limitation in the time-frequency plane (Eq. 4) and the true
spread of vocal frequencies.

We would like to identify each of these thick lines as a single vibrato component, as opposed to
several. Reassignment methods, which remap the time-frequency plane in order to localize
spread-out structures, could help to localize the vibrato spreading [14, 15, 16]. We have
chosen not to implement time-frequency reassignment, though we show the effect of applying
one such algorithm on an example signal below. Figure 6 shows an perfectly sinusoidally
modulated signal, along with its spectrogram and its Fourier Transform. Figure 7 shows the
reassigned spectrogram of the same signal. These signals and plots were generated using the
Time-Frequency Toolbox!.
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Figure 6: Spectrogram of sinusoidally modulated time signal

!Time-Frequency Toolbox (for use with MATLAB) by F. Auger, P. Flandrin, P. Gongalves, and O.
Lemoine (1995-96) available at http://tftb.nongnu.org/
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Figure 7: Reassigned spectrogram of sinusoidally modulated time signal

2.2.1 Contrast Enhancement

High intensity points appear brighter than low intensity points in the spectrogram. We
increase spectrogram contrast in order to enhance the contours of vibrato structures. This
achieved by stretching the image histogram to the full available range of gray-scale values.
This simple step is found to aid in accentuating the vibrato from the spectrogram’s back-
ground information. We also experimented with gamma correction filters, but these only
further obscured the vibrato.

2.2.2 Canny Edge Detection

We apply Canny’s method for edge detection to the spectrogram images in order to dis-
criminate the boundaries of the vibrato signals. Canny’s algorithm uses multidirectional
derivatives, multiscale analysis, and optimization procedures in order to detect edges [17].
The method is characterized by low probabilities of false edge detection and of erroneously
detecting edges, good localization of detected edges, and production of a single output from
a given edge.

The purpose of edge detection is to improve localization of features in the Hough-Radon
space, as will be discussed. We have found that applying the Hough-Radon Transform to
edge-detected versions of spectrograms results in improved sinusoidal parameter detection.
This assumes that the detected edge correspond spatially with the sinusoids of the spectro-
gram.
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2.3 Vibrato Detection: Hough-Radon Transform

The Hough-Radon transform (HRT') is described in [18], where it is applied to the detection of
linearly frequency-modulated signals in the time-frequency domain representations of knee-
joint vibration sounds. The Hough transform itself, which is equivalent to the Hough-Radon
transform when applied to binarized images, is described in detail in [19]. The Radon
transform is a less general version of the HRT, and is only used to detect straight lines.

Let us assume that each vibrato signal has infinite time duration. Let us then parameterize
a given vibrato signal as a sinusoid in the time-frequency plane:

W(a,b,c,d) (t) = a-sin (b “t+ C) +d, (5)

where we define the following parameters of the vibrato:

e a — extent, or amplitude,

e b — rate, or osciallation frequency,

e ¢ — initial phase offset,

e d — harmonic/baseline frequency.
The HRT algorithm stores a 4-D floating-point data structure B, with each dimension cor-
responding to one of the parameters a, b, ¢, d. We refer to element B(a;, b;, ¢;,d;) as the bin

for quadruple (a;, b;, ¢;, d;). After applying the transform, each bin B(a;, b;, ¢;, d;) stores the
integral of the spectrogram S(¢,w) along the ¢ — w planar curve wqp.c.q)(t):

t=tmax

B(ai, bi, C;, dl) = / S(t, w(a,b,c,d) (t)) dt (6)

t=0

Thus, the value B(a;, b;, ¢;, d;) is a measure of the strength of the sinusoid a;-sin (b; - t + ¢;)+d;
in the spectrogram. We refer to the (a, b, ¢, d) parameter space as the Hough-Radon space.

We note that the four Hough-Radon domain parameters, as well as ¢ and w must be quantized
appropriately, so as not to exceed memory and computation time limitations. In addition,
intelligent choices must be made for the upper and lower bounds of the parameters. These
choices relate to the acoustics of vibrato, as discussed earlier. Quantization is discussed in
section 3.1.

2.3.1 Implementation
The HRT is implemented as follows:
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1. Bound and quantize the Hough-Radon and time-frequency spaces,

2. Loop through each point (a;, b;, ¢;, d;) in the Hough-Radon space:

For each point ¢; in the time domain:

(a) Compute wg, b, e, (ti),
(b) Increment the bin B(a;, bi, ¢;, d;) = B(as, bi, iy di) + Wa, bs,00,d5) (i)

Another possible implementation is as follows: For each point (¢;, f;) in the spectrogram with
a non-zero value, let a, b, ¢ equal each of their allowed quantized values. Solve for the value of
the remaining parameter via d = w; —a;-sin (b; - t; + ¢;) and round it to the nearest quantized
value. Then increment the bin value by B(a;, b;, ¢;, di) = B(a;, by, ¢i, di) 4+ Wiay ps,00,d:) (Li)-

We normalize the spectrogram values to the range [0, 1] prior to performing the HRT. A
relatively high intensity bin value B(a;,b;,¢;,d;) indicates the presence of a vibrato signal
Wiaybs,ernds) (). As described in [18], some form of thresholding must be applied to the bin
values in order to distinguish the presence of vibrato from background information.

2.3.2 Implementation using Template Matching

The implementation of the HRT described in section 2.3.1 requires that the sin function be
evaluated at every time location for every choice of parameters. We hypothesized that this
was a waste of computational effort and that the HRT implementation could be sped up via
template matching. Rather than calculating sin (b; - t + ¢;) at every point, we index a high
resolution 1-D sinusoidal template array. In our implementation, the template had 10,000
sample points for one period of a sinusoid. The value sin (b; - t + ¢;) is retrieved by modular
indexing of the template array.

Over several comprehensive tests, computation time of the HRT using the template matching
implementation was found to (surprisingly) take on average 8.4% longer than using the
original implementation. Thus, the original implementation was used for all testing. This
result seems to indicate that the sin function in MATLAB is highly optimized.

2.4 Parameter Detection: Hough-Radon Filtering

We have already established that a sinusoidal pattern will appear as relatively high intensity
features in the Hough-Radon (H-R) domain. This assumes two things: First, that the true
parameters of the sinusoid in the time-frequency plane are within the boundaries of the H-R
parameter space. Second, that the H-R parameter space quantization is sufficiently dense to
detect the sinusoid.
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Detecting high intensity features that represent sinusoids is accomplished by filtering in the
H-R domain. The domain is initially thresholded in order to retain high intensity candidate
sinusoid parameters. Now suppose that the given parameter vector (a;, b, c;, d;) is “close”
to (a}, b, c;,d}). (In the work that follows, we quantify “closeness” in the 4-D Euclidean

17 71 T T
distance sense.) If the nearby H-R bins B(a;, b;, ¢;, d;) and B(a}, b}, ¢}, d;) both surpass the
threshold, then it is possible that their associated parameters should be clustered together
in order to designate the parameters of a single sinusoid. In other words, both bins may
indicate the presence of sinusoids from the same vibrato signal. Thus, we follow H-R domain

thresholding with clustering.

2.4.1 Thresholding

Thresholding is used to distinguish high intensity sinusoidal parameters in the H-R domain.
The threshold is computed based on the histogram Pyg(l) of the 4-D H-R domain. Let
pur and opr denote the mean and standard deviation of the histogram. For many of our
test cases, thresholds of T' = pupr + m - ogr, where m ranges from 5 to 10, are good at
discriminating sinusoids in the H-R domain. We note that the H-R histogram means pupgr
tend to be quite low for our test cases, as the majority of points in the H-R domain do
not correspond to sinusoids and thus have very low intensities. Several examples of these
histograms are given in section 4.

Another way that we choose the H-R threshold is by searching for the gray-value T" below
which a certain proportion of the histogram’s weight is distributed. Thus, we may choose
the threshold as the minimum value of 7" that satisfies ZlT:o Pur(l) > p, where Pyg is the
normalized histogram and p is the cutoff probability. We choose p to be appropriate to
distinguish vibrato. In our test cases, p ranges from 0.95 to 0.995 and it depends on nature
of the H-R domain.

2.4.2 K-Means Clustering

We apply the iterative K-means clustering algorithm [19] to the H-R domain subsequent
to thresholding. This step is used to cluster together all close H-R points (i.e. bins) that
denote the presence of a single vibrato sinusoid parameter vector. The algorithm terminates
with the centres of K cluster domains. These centres are minimize the sum of the squared
distances between all points of a cluster and the cluster’s centre. The value K is set to
equal the number of suspected sinusoids in the H-R domain. In practice, this number is
determined by visual inspection of the time-frequency representation.
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3 Sinusoid Detection

Here we elaborate on how the methods of section 2 are used to detect vibrato.

3.1 Parameter Quantization

Given that it is a 4-D data structure, the full H-R domain grows very quickly in size as
the search space parameter resolution is increased. More significantly, computation time
becomes a limiting factor. Timings of the HRT algorithm versus the number of quantization
bins used are given in Table 1. As expected, there is a linear dependence between number
of bins and the computation time.

Number of H-R bins | Average run time (s)
1 0.015
11 0.078
21 0.125
41 0.235
81 0.437
161 0.844

321 1.609
641 3.235
1281 6.500
2561 13.079
5121 25.641

Table 1: Average HRT algorithm timings (for four runs at each bin level) on a 3 GHz Pentium
4 with 1 GB of RAM.

The majority of our test cases consisted of sound files with duration of about 2 to 5 seconds
sampled at 22,050 Hz. Let IN; and Ny denote the number of pixels along the time and
frequency axes of the resulting spectrogram, respectively. As previously stated, N; = | (N —
P)/(K — P)|, where N is the number of sound samples, K is the window length (usually
either 768 or 1024 samples), and P = K /2 is the window overlap. The number of frequency
samples is Ny = K/2. Thus, our spectrogram images were no in general no bigger than
roughly N; x Ny = 300 x 500 pixels. The majority of our spectrograms have frequency axes
limits of 0 to either 4,000 Hz or 8,000 Hz.

Quantization for each parameter is described separately below. We only give approximate
ranges for the parameter search space resolutions, as the actual values used depended highly
on the examples investigated. When the resolution of one parameter is chosen to be partic-
ularly high, there is often a trade-off in the resolution of another parameter. This discussion
only applies to the quantization used for actual (recorded) voice data, as opposed to syn-
thetically generated data.
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e a — extent: Amplitudes of sinusoids are observed vary between 10 Hz and 110 Hz in
the time-frequency representations of our examples. Also, extent generally increases
with the harmonic frequency (d) of the sinusoids. The relationship between a and d
is complex, and analysis of these two parameters on a real example is given in section
4.2. If we are analyzing vibrato at a known partial frequency d, then we quantize a to
up to 100 values in the range [amin, Gmax], Where ayin and ap.y are intelligently chosen
to encompass the expected range of vibrato extent at partial d. Otherwise, we allow a
to vary between the full 10 Hz to 110 Hz range.

e b — rate: The vibrato rates for our examples (all trained opera singers) are known
to be safely within the range b,;, = 5.5 Hz and to b,.. = 85 Hz. This range is
evenly quantized into between 10 and 50 evenly spaced values for the majority of our
examples.

e ¢ — initial phase: This can be anywhere in the range 0 to 27. However, we note
that all sinusoids in the spectrogram of a single voice are in phase. Thus, parameter ¢
is constant for each test. Our minimum/maximum range for ¢ is estimated based on
visual inspection of the spectrogram. Generally, this range is kept quite small and it
is divided into no more than 10 values.

e d — harmonic frequency: It is known that partials appear at all integer multiples of
the sung note’s fundamental frequency. The fundamental frequencies in our examples
ranged from between about 200 Hz to 1000 Hz. Given that the maximum search space
for d is usually [0,4000 Hz|, the number of partials at which sinusoids need to be
detected may range from 4 to 20. When the note’s fundamental frequency is known,
we choose the search space for d to include the frequencies of the suspected partials.
When no information is given, we search the entire frequency range using between 10
and 100 values for d.

3.2 Parameter Space Optimization

In the discussion that follows, we treat the problem of determining sinusoid parameters in
the HRT as an optimization problem. In this context, “searching” the parameter space along
certain variables refers to performing HRT integration along the corresponding sinusoids.

Intelligent reduction of the parameter search space can be achieved by considering the nature
of vibrato in the time-frequency representations. In general, we begin by coarsely stepping
through the parameter space. Once candidate parameters for the vibrato have been found,
we increase parameter resolution in the search space around the candidate parameters. This
saves the computational effort of finely searching through locations in the parameter space
where no vibrato is present. High resolution searches are generally performed on the Canny
edge filtered spectrograms, whereas low resolution searches are performed on the unfiltered
spectrograms.
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The vibrato sinusoids of one voice are known to be in phase (constant ¢) and to all possess
an approximately constant rate (b). Thus, we search for single values of both b and ¢ that
maximize the HRT. The vibrato sinusoids can have varying (although correlated) values of
a and d, which we wish to determine. The steps of our strategy are as follows:

1. 1-D search for approximate maximizers in d — Rather than performing a brute
force HRT using every allowable parameter value, we begin by performing the HRT
along only the d parameter space. This is done by setting a = 0 in order to disre-
gard all parameters except for d in the HRT. In other words, we perform integration
along horizontal lines. Peaks in the resulting 1-D HRT then indicate the approximate
locations of the partials.

2. 4-D search for approximate maximizer in ¢ — The search space in the HRT is
broadened to include all variables a, b, ¢, d, with searching along d performed using the
candidate positions of step 1. The resolutions along a, b, c are low in this step. We
determine a single value for the initial sinusoid phase shift by searching for a global
maxima in the H-R domain along only the ¢ direction. The search is performed by
transforming H-R domain into a 1-D function by summation along parameters a, b, c.

3. 4-D search for true maximizer in ¢ — We repeat the search of step 2 starting
around the candidate phase shift value found. The resolution along c¢ is very high. We
repeat the 1-D maxima search to find the exact value for ¢ that maximizes the HRT.
This is the final value determined for the vibrato phase shift.

4. 3-D search for approximate maximizer in b — The search of step 2 is repeated
using the single value for ¢ determined in step 3. We increase the resolution of the
search space in parameter d. More accurate estimates of the partial frequencies are

found by searching for maxima along d. Also, approximate values are determined for
a,b.

5. 3-D search for true maximizer in b — The search of step 4 is repeated using
increased resolution in b and the more finely tuned approximations for maxima along
d. We find the exact value of b that maximizes the HRT. This is the final value
determined for the vibrato rate.

6. 2-D search for true maximizers in a,d — The resolution along directions a, d is
greatly increased, with parameter values for a chosen to roughly increase with increas-
ing d. This corresponds to our observation that vibrato extent (a) is an increasing
function of harmonic frequency (d). This final high resolution search yields the
parameters a,d of the vibrato sinusoids present in the spectrogram.
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3.3 Multiresolution Strategy

A multiresolution strategy was devised in order to facilitate the parameter space searching.
The HRT is applied to spectrograms of progressively finer resolution: {S*, 52 ..., S"~1 S}
Here S™ is the original image (highest resolution), S"~! is the image at the next lower
resolution, ..., and S! is the lowest resolution image. We use n = 4 for our experiments and
choose to downsample S® by factor of 2 along each dimension (using bicubic interpolation)
to obtain S?~!. We also apply progressively increased Gaussian blurring to the downsampled
images.

The underlying assumption behind this strategy is that the approximate parameters of sinu-
soids are easier to obtain (due to fewer local optima in the search space) at low resolutions.
This is because the sinusoids (along which HRT integration is performed) are “thicker” with
respect to structures in lower resolution spectrograms. Fine tuning of the parameters is
achieved at higher spatial resolutions of the spectrograms.

4 Results and Discussion

We demonstrate the application of our methods to both simulatd and actual vibrato data.

4.1 Simulated Data

The first two examples, shown in Fig. 8, are of simulated spectrograms for which the vibrato
parameters b and ¢ are held constant at 10 Hz and 7/2 radians, respectively. The examples
have time and frequency scales of [0, 1] seconds (500 samples) and [0, 1000] Hz (250 samples),
respectively. Circular averaging is performed on the sinusoids in Fig. 8(b) using circular
average filters with radii of 1, 2, 3, and 4 samples.

4.1.1 1-D Hough-Radon Transforms

Figure 9 shows H-R transforms of the ideal sinusoid at 600 Hz in Fig. 8(a) obtained by
searching along each parameter a, b, c,d individually. The parameters are varied about the
exact sinusoid parameters. Each HRT is computed using 200 parameter values (bins). Ob-
serve that the HRT exhibits a global maximum at the precise sinusoid parameter values.
The only non-symmetric HRT is that Fig. 9(a) obtained by varying a. For a € (26, 30) the
HRT is convex, while for a > 30 the HRT is concave.

Figure 10 shows H-R transforms of the sinusoids in Fig. 8 (a) and (b) obtained by varying
parameter d through the entire search space, with a, b, ¢ fixed at 20 Hz, 10 Hz, and 7/2,
respectively. The resolution of d is 1 Hz. Observe that the since a = 20 for these transforms,
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Ideal Sinusoids (a = [10, 20, 30, 40], b = [10], ¢ = [1.5708], d = [200, 400, 600, 800]) Blurred Sinusoids (a = [10, 20, 30, 40], b = [10], ¢ = [1.5708], d =200, 400, 600, 800))

Frequency (Hz)
Frequency (Hz)

0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Time (s) Time (s)

(a) (b)

Figure 8: Simulated vibrato: (a) ideal and (b) blurred sinusoids with parameters (a, b, ¢, d) =
(10, 10, /2, 200), (20, 10, /2, 400), (30, 10, 7 /2, 600), (40, 10, /2, 800)

the largest peak corresponds to the sinusoid at 400 Hz. The peaks in the HRT of the blurred
sinusoids are less differentiated in height than in the HRT of the ideal sinusoids. Also, the
main peak in Fig. 10(b) is not as high as the main peak in Fig. 10(a). We note that sinusoids
in real spectrograms are blurred, complicating the task of detection.

Our next example is of the 1-D HRT applied to the simulated data in Fig. 11(a). The
sinusoids in this data are identical except in frequency, which range from 6.0 to 10.5 Hz
in increments of 1.5 Hz. The 1-D HRT in Fig. 11(b) is obtained by varying parameter
b between 4.5 and 12 Hz over 200 steps. It is visually very difficult to differentiate the
overlapping signals in Fig. 11(a). However, the HRT clearly depicts the four sinusoids.

The final 1-D HRT example in Fig. 12 is somewhat pathological. Nonetheless, it illustrates
an extreme case of a both linearly and sinusoidally modulated sinusoid.

4.1.2 2-D Hough-Radon Transforms

We illustrate the HRT applied to the blurred simulated data in Fig. 8(b). We vary two
parameters at a time in these examples. Figure 13 shows three 2-D Hough-Radon transforms
obtained by varying each parameter through 100 values about the actual parameters of the
600 Hz sinusoid of Fig. 8(b). The intensities on these plots are shown on a log,, scale in
order to bring out subtle features.

The histograms of these 2-D HRT's are shown in Fig. 14. We note that all of the content
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Figure 9: 1-D HRT of simulated ideal vibrato obtained by varying parameters (a) a, (b) b,
(c) ¢, and (d) d individually

19



HRT Value

500

450 -

400 -

350

300 -

N}
133
S

1-D Hough-Radon Transform
T T

1-D Hough-Radon Transform
T T T

b

450

HRT Value
N
13
=]

N}
=3
=)

400 -

350+

300+

150 +

100+

50 -

| S S |

I
100

I I L
200 300 400 500 600 700 800 900
Parameter d

(a)

I
100

I
200

I I I I I
300 400 500 600 700 800 900
Parameter d

(b)

Figure 10: 1-D HRT of simulated (a) ideal and (b) blurred vibrato obtained by varying
parameter d through entire search space
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Blurred Sinusoids (a = [70], b =[10], ¢ =[0], d =[125:625]) 5 1-D Hough-Radon Transform
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Figure 12: (a) Simulated (blurred, radius = 4) linearly modulated vibrato with parameters
(a,b,c,d) = (70,10,0,d), where d ranges linearly from 125 to 625 Hz; (b) HRT of simulated
linearly modulated vibrato by varying d from 100 to 700 Hz
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Figure 13: 2-D Hough-Radon transforms on log,, scales obtained by varying parameters
through 100 values each, as follows: (a) a,b, (b) a,d, (c) b,d
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related to the sinusoids present in the HRTs is at the extreme high intensity end of the
histograms. We threshold the HRTs using a probability cutoff p = 0.99, as defined in
section 2.4.1. The resulting images are shown in Fig. 15.

log, Histogram of HRT using 100 bins (mean = 136.712, stdev = 43.984) 0, Histogram of HRT using 100 bins (mean = 94.706, stdev = 138.562) s , stdev =37.373)
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Figure 14: Histograms on log,, scales of 2-D HRTs obtained by varying: (a) a,b, (b) a,d,
(c) b,d

Thresholded 2D Sinusoidal Hough-Radon Transform

Figure 15: Thresholded (p = 0.99) 2-D Hough-Radon transforms obtained by varying para-
meters through 100 values each, as follows: (a) a,b, (b) a,d, (c) b,d

Choosing K = 1, we perform K-means clustering on the three thresholded histograms,
yielding very good results of (a = 28.82,b = 10.01), (a = 28.33,d = 600.02), (b = 10.00,d =
600.00) for the sinusoid.

For our final 2-D HRT example again deals with the simulated data in Fig. 8(b). We vary
the parameters a,d over the range of all permissible values. The computed 2-D HRT has
10,000 points (100 per variable). Figure 16 shows both the log;, HRT and its thresholded
version at p = 0.995. The threshold at this level is computed to be 385.07. The histogram
of this 2-D HRT and the results of K-means clustering (using K = 8) are shown in Fig. 17.
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2D Sinusoidal Hough-Radon Transform (Iog10 scale)

Thresholded 2D Sinusoidal Hough-Radon Transform
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Figure 16: (a) log,, scaled 2-D HRT and (b) thresholded (p = 0.995) 2-D HRT obtained by
varying parameters a, d through 100 values each
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Figure 17: (a) Histogram of 2-D HRT obtained by varying parameters a, d; (b) Results of
8-means clustering on thresholded 2-D HRT (true parameter values are shown using red
circles, experimental results are shown using blue squares)

23



4.2 Real Data

We illustrate the sinusoidal Hough-Radon for vibrato detection on the spectrogram data
in Fig. 18 of an operatic baritone singing an A (fundamental frequency 213 Hz) and a D
(fundamental frequency 270 Hz) on an “ah” vowel. We perform segmentation (with the
help of Adobe Photoshop 7.0) to obtain comprehensive manual measurements on the first
spectrogram (Fig. 19(a)). These measurements are used gold standards against which we
compare our program’s vibrato detection results. The vibrato rates (b) in both audio files
are computed manually to be 7.5 Hz.

The manual measurements include the following measures of the individual vibrato compo-
nents at the varying harmonic frequencies:

e mean intensity (0-255 scale),

e total area on time-frequency plane (dimensionless),

e total frequency span (Hz),

e width in frequency (Hz),

e maximum peak-to-peak amplitude (Hz),

e minimum peak-to-peak amplitude (Hz).
The peak-to-peak amplitudes given are equal to twice the extent of the vibrato. Both
maximum and minimum values are given for amplitude, as each vibrato signal appear to be
composed to both a low and a high amplitude wave. (This indicates that the vibrato signals
are in fact not pure sinusoids.) We note that there are clear correlations between all of these
variables and the harmonic frequency of the vibrato being analyzed. Vibrato intensities
are particularly strong at the four strong partials frequencies, as seen in the spectrogram

analysis. Observe that the vibrato amplitude (extent, a) increases nearly linearly with
harmonic frequency.

4.2.1 Multiresolution Spectrograms

Figure 20 shows the four spectrogram resolutions used for the analysis of the 213 Hz baritone
data. Downsampling (by 2 in both time and frequency axes) was done using bicubic interpo-
lation. A 4 x 4 Gaussian blur with standard deviation of 4 was applied to the spectrograms
at each resolution prior to downsampling.
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Power spectrogram of baritone singing A at fundamental frequency 213 Hz Power spectrogram of baritone singing D at fundamental frequency 270 Hz
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Figure 18: Spectrograms of a baritone singing an (a) A (fundamental frequency 213 Hz) and
a (b) D (fundamental frequency 270 Hz) on an “ah” vowel
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Figure 19: Gold standard (manual) measurements of spectrograms with baritone singing (a)
A (fundamental frequency 213 Hz) and (b) D (fundamental frequency 270 Hz)
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1/8 Resolution downsampled spectrogram of baritone singing A 1/4 Resolution downsampled spectrogram of baritone singing A
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Figure 20: Multiresolution images of baritone singing A. Time-frequency plane resolutions
are: (a) 72 x 55, (b) 142 x 108, (c) 282 x 214, (d) 562 x 427
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4.2.2 Hough-Radon Transforms

We employ the strategy described in section 3.2 in order to first obtain the parameters b, ¢
for the vibrato signals. The values of these two parameters are determined to be b = 7.5
(as measured by manually) and ¢ = 3.14 after analysis of the 4-D Hough-Radon transforms.
Using this information, we construct the 2-D HRTs by varying parametesr a,d. We choose
the following bounds and quantization: a € [10 : 1 : 110] and d € [120 : 10 : 3500]. The
peculiar lower bound on d is to ensure that we do not exceed the boundaries of our spec-
trogram during integration. Note: With our prior knowledge of the fundamental frequency
(213 Hz), we could have made more intelligent choices for the quantization of d. However,
we choose rather to illustrate the HRT in all of its brute-force glory.

The 2-D Hough-Radon transform of the spectrogram is shown in Fig. 21. The high in-
tensity regions in the HRT correspond precisely with the estimated a,d parameters of the
vibrato. Figure 22 shows the histogram and cumulative histograms of the HRT. The results
of thresholding at p = 0.80 and p = 0.99 are shown in Fig. 23.

2D Sinusoidal Hough-Radon Transform 2D Sinusoidal Hough-Radon Transform (log10 scale)

l’l

Parameter a
Parameter a

1500 2000 2500 3000 1500 2000 2500 3000 3500
Parameter d Parameter d

(a) (b)

Figure 21: 2-D HRT of spectrogram in Fig. 18: (a) linear scale, (b) log,, scale

5 Future Work

We suggest the following ideas for improvement the program.
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Figure 22: (a) Histogram and (b) cumulative histogram of 2-D HRT of spectrogram in Fig. 18
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Figure 23: Thresholded HRTs of spectrogram in Fig. 18: (a) p = 0.80, (b) p = 0.99
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5.1 Stockwell Transform

We suggest using the Stockwell Transform (S-transform) to generate the time-frequency
representation of the audio signal [20]. The S-transform is a particular continuous wavelet
transform that that uses the Morlet wavelet. For a time series signal u(t), it is defined as

S(t, f) = /_OO u(t)w(t —t, fle > at, (7)

o0

where the windowing function w(7 — ¢, f) is a Gaussian centred at time 7:

S e
k/ 27r '

The parameter k is used to scale the width of the window. The S-transform is similar to
the STF'T, except that the windowing function w is automatically scaled with frequency.
Narrower windows are used to localize high frequency content, while wider windows are
used to detect lower frequency variations. This operation is intuitive, as low frequency
variations in a signal take place over longer time duration than high frequency variations.
Since the window is not of a fixed width, this scaling means that more optimal time-frequency
localization can be achieved than with the STFT. In addition, it is not necessary to search
for an optimal window width.

w(r —t, f) = (8)

5.2 Time-Frequency Reassignment

As mentioned in section 2.2, localization of structures could be significantly improved using
a reassignment method[14, 15, 16]. From our experience, these methods effectively localize
most synthetically generated frequency modulated signals in the spectrogram.

5.3 Detection of Incomplete Sinusoids

We refer to “incomplete” sinusoids as those for which any of the parameters a, b, ¢, d are not
constant within the analysis time frame, as in Fig. 2. It is apparent that our current methods
fail to conclusively detect incomplete sinusoids. These may appear in the spectrogram for a
number of reasons: changing of pitch, volume, nasality, breathing, etc.

We propose to search for such incomplete sinusoids by adding a time accumulator to each
bin of the HRT. Thus, B(a, b, ¢, d) becomes B(a, b, c,d,t). For given parameters (a;, b;, ¢;, d;),
the univariate function B(a;,b;, i, d;,t), t = 0,..., tmax, is the cumulative value of the bin

value up to time ¢:
T=t

B(ai, b, i, diy t) = / S(T,Wapea (7)) dr, (9)

=0
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where S is the spectrogram. For bins with relatively high values B(a;,b;,¢i, di,tmax), a
discontinuty in B(a;, b;, ¢;, d;, t) at t = ¢’ indicates the sudden appearance of a sinusoid with
parameters (a;, b;, ¢;,d;) at time t'. Likewise, if the function B(a;, b;, ¢;, d;, t) levels out (has
low slope) between ¢t =t and t = t”, then we are alerted to the disappearance of the sinusoid
between t' and t”. This analysis will most likely require computation of the time derivatives
4 B(a;, b;, ci, d;, t

dt @i, O, Ciy Qs )

5.4 Parameter Optimization Strategy

It is clear from the discussion in section 3.2 that searching for sinusoid parameters is akin to
finding maximizers in the H-R domain. Thus, we propose to use a numerical optimization
strategy (e.g. Nelder-Mead Simplex gradient ascent or Powell’s method [21]) to determine
these maxima. The function to be maximized is the 4-D HRT bin value B(a,b,c,d). The
numerical optimizer would decide which parameters to pass to the HRT in order to compute
the bin values, rather than blindly computing B(a, b, ¢, d) for all parameters within the search
space. We note that this optimization will be complicated by the fact that the H-R domain
has many local minima and maxima. Thus, both local and global optimizations may be in
order.
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