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1 Introduction

Breast cancer is one of the most important malignancies in women. Statistics from the Na-

tional Cancer Institute of Canada show that the lifetime probability of a woman developing

breast cancer is one in 8.9, with a lifetime probability of one in 27 of dying due to the dis-

ease [1]. Since only localized cancer is deemed to be treatable and curable, as opposed to

metastasized cancer, early detection of breast cancer is of utmost importance [2].

Mammography is the best available tool for early detection of breast cancer. However, the

sensitivity of the screening mammography is influenced by the image quality and the radiol-

ogists level of expertise. Contrary to masses and calcifications, the presence of architectural

distortion is usually not accompanied by a site of increased density in mammograms. The

detection of architectural detection is performed by a radiologist through the identification

of more subtle signs of abnormality, such as the presence of spiculations and the distortion

of the normal oriented texture pattern of the breast.

Bird et al. [3] observed that, misinterpretation of breast cancer signs accounts for 52%

of the errors and overlooking signs is responsible for 43% of the missed lesions. The extent of
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errors due to overlooking of lesions reinforces the need for computer-aided diagnosis (CAD)

tools in mammography. The clinical significance of early architectural distortion detection

is well recognized.Various Computer aided diagnosis (CAD) techniques and systems have

been proposed to enhance the sensitivity of the detection of breast cancer.Although these

techniques are effective in detecting masses and calcifications, they have failed in detecting

architectural distortion with sufficient level of accuracy. Therefore, new system for the

detection of architectural distortion should be targeted.

The purpose of this project was to explore the application of fractal analysis and Har-

alick’s texture measure to the investigation of architectural distortion in screening mammo-

grams. The fractal dimension of mammographic regions of interest (ROIs) was calculated

using the circular average power spectrum technique. Overall, the average fractal dimension

of the normal ROIs was statistically significantly lower than that of the ROIs with architec-

tural distortion. For the first prior year of cancer detection cases, the best receiver operating

characteristics (ROC) performance achieved was 0.7357 with the fractal analysis and 0.6962

with Haralick’s texture measure.

1.1 Architectural Distortion

Architectural distortion is defined in BI-RADS [4] as follows: “The normal architecture (of

the breast) is distorted with no definite mass visible. This includes spiculations radiating

from a point and focal retraction or distortion at the edge of the parenchyma. Architectural

distortion can also be an associated finding.” Focal retraction is considered to be easier

to perceive than spiculated distortion within the breast parenchyma [5]. Architectural

distortion could be categorized as malignant or benign, the former including cancer and the

latter including scar and soft-tissue damage due to trauma.

Architectural distortion is the third most common mammographic sign of non palpable

breast cancer [6] but due to its subtlety and variable presentation it is often missed during

screening. Specifically, architectural distortion accounts for 12% to 45% of breast cancers
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overlooked or misinterpreted at screening mammography [7] [8].

The clinical significance of early architectural distortion detection is well recognized.

Burrrell et al. [9], in a study of screening interval breast cancers, showed that architectural

distortion is the most commonly missed abnormality in false-negative cases. Broeders et al.

[10] suggested that improvement in the detection of architectural distortion could lead to an

effective improvement in the prognosis of breast cancer patients.

Several studies have been reported on the detection of architectural distortion. Ayres

and Rangayyan applied phase portrait maps to characterize oriented texture patterns of the

architectural distortion [11] [12] [13]. Guo et al. [14] investigated the characterization of

architectural distortion using the Hausdorff fractal dimension, and a support vector machine

classifier to distinguish between ROIs exhibiting architectural distortion and those with nor-

mal mammographic patterns. Tourassi et al. [15] studied the use of fractal dimension to

differentiate between normal and architectural distortion patterns in mammographic ROIs.

Matsubara et al. [16] [17] [18] used mathematical morphology to detect architectural distor-

tion around the skin line and a concentration index to detect architectural distortion within

the mammary gland. There are also a number of studies on the performance of commercial

CAD system in the detection of architectural distortion.

2 Background

Ayres and Rangayyan [13] have developed techniques for the detection of AD in mammo-

grams, based on the analysis of oriented texture through the application of Gabor filters

and linear phase portrait model.The breast contains several piecewise linear structures, such

as ligaments, ducts, and blood vessels, that cause directionally oriented texture in mammo-

grams.The presence of AD changes the normal oriented texture of the breast. Characteriza-

tion of such subtle changes from a pattern recognition perspective was the goal of their work

[12].
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Their overall method for the detection of architectural distortion consists of the following

stages:Orientation field extraction using Gabor filters, Curve Linear Structure (CLS) selec-

tion, orientation field filtering and down sampling, phase portrait modeling and detection

of sites of architectural detection. The orientation field was extracted using a bank of real

Gabor filters employed as line detectors. The CLS of interest (spicules and fibrous tissue)

were separated from confounding structures (pectoral muscle edge, parenchymal tissue edges,

breast boundary, and noise) using the orientation field, the gradient field and a non maximal

suppression (NMS) technique. The selected core CLS pixels and the orientation field are

filtered and down sampled, to reduce noise and also to reduce the computational effort re-

quired by the subsequent methods. The down sampled orientation field was analyzed using

phase portraits, yielding three phase portrait maps: node, saddle and spiral. The node map

was further analyzed in order to detect the sites of architectural distortion.

The methods were tested with one set of 19 cases of architectural distortion and 41

normal mammograms, and another set of 37 cases of architectural distortion. The resulting

free-response receiver operating characteristics (FROC) curve gave the sensitivity rates of

84% at 4.5 false positives per image and 81% at 10 false positives per image for the two sets

of images [11].

So further improvement of this technique is required to reduce the number of false posi-

tives. In order to reduce the false positive rate in this method, I have proposed an application

of fractal analysis and Haralick’s 14 texture measure in their method. For this project, 38

mammographic images (14 images from the year of cancer detection, 10 images from first

prior year of detection and 10 images from second prior year of detection) of 7 subjects have

been used.
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3 Materials and methods

3.1 Fractal Analysis

Fractal analysis has become popular in biomedicine as increasingly more studies suggest that

it can provide insights into many complex physical phenomena. Often, seemingly irregular

structures demonstrate the salient property of self-similarity: to appear similar under a range

of measurement scales [19].Consequently, such objects are described by fractal geometry us-

ing a non-integer dimension known as the fractal dimension. Generally, the fractal dimension

describes the rate of additional structural details as the measurement scale changes.

For digitized images in particular, self-similarity appears to hold in many biomedical

systems. For digitized images in particular, self-similarity is satisfied on average and is often

limited to a small range of scales. Regardless, fractal analysis has found widespread appli-

cation in many medical imaging modalities such as radiography, nuclear medicine, CT and

MRI. Specifically in mammography, several studies have suggested that the normal breast

parenchyma behaves as a fractal object. Tourassi et al. [15] calculated FD of mammo-

graphic region of interest (ROIs) using the circular average power spectrum technique. They

observed that the presence of architectural distortion disrupts the self-similarity properties

and thus alter the fractal dimension of normal breast parenchyma.

Although there are many fractal measures, fractal dimension is the most frequently used

in medical imaging. There are a wide variety of techniques available to estimate the fractal

dimension of an image. All techniques follow the same underlying principle. An image

characteristic is expressed as a function of the scale parameter according to which it is

measured. When plotted in the log-log domain, the function is linear. The slope of the

fitted line computed by linear regression is linearly related to the fractal dimension of the

image. The fractal dimension estimation techniques typically differ in the definition of the

scale parameter and the measured image characteristic. Consequently, they produce widely

different fractal dimension estimates, often capturing different textural image properties.
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In diagnostic imaging the power spectrum estimation method has gained much attention

because it appears to provide the most accurate and robust estimates [20] [21]. Aguilar

et al. [20] proposed a new frequency analysis method, fractal analysis by circular average

(FACA), and an image replication procedure together produce accurate measurements of

the fractal dimension of surfaces and profiles, eliminating Fourier transform artifacts which

arise from the lack of periodic continuity in real surfaces and profiles.

Schepers et al. [22] examined four methods to estimate the fractal dimension from

self-affine signals. The first of these was the relative dispersion (RD) analysis. The others

were correlation analysis, rescaled range analysis, and power spectral analysis. The signals

analyzed by them were the examples of Brownian noises; they were characterized by a specific

power spectrum of the form S(f)αf−β where f was frequency. Thus they used the Fourier

analysis as their fourth procedure to estimate the fractal dimension. They added that the

1/f noise, as it is frequently called, is common in nature, although the physical reason is

not well understood. Bak et al. [23] proposed a general model for systems with a very high

number of degrees of freedom, called “self-organized criticality”, which accounts for both 1/f

noise and fractals.

Many physical and biological systems have 1/fβ Fourier spectra - a fractal attribute im-

plying multiple similar mechanisms operating at various spatial and temporal scales. Billock

et al. [24] showed that measures of a changing visual environment and perceptual measures

of how we see it exhibit fractal-like multiscale characteristics; both dynamic images of nat-

ural scenes and human temporal frequency perception display commensurate 1/fβ spectral

behavior.

Noise with a power spectral density that varies as an inverse power of frequency is called

1/fβ noise. 1/fβ noise occurs in an impressive variety of physical systems, and numerous

complex theories have been proposed to explain it. Lowen et al. [25] constructed two

relatively simple renewal processes whose power spectral densities vary as 1/fβ. Rios et al.

[26] proposed a simple model, able to implement some of the current and most accepted
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ideas on 1/fβ noise and to show a clear 1/fβ behavior independent on the dimension of the

system. They unveiled that the origin of 1/fβ behavior has to be found in the superposition

of power spectra with characteristic frequencies fc suitably distributed in space.

3.2 Haralick’s Measures of Texture

The most commonly used measures of texture, in particular of random texture, are the

statistical measures proposed by Haralick et al. [27] [28]. Haralick’s measures are based upon

the moments of a joint PDF that is estimated as the joint occurrence or co-occurrence of gray

levels, known as the gray-level co-occurrence matrix (GCM). GCM are also known as spatial

gray-level dependence (SGLD) matrices, and may be computed for various orientations and

distances [29].

The GCM P(d,θ)(l1, l2) represents the probability of the pair of gray levels (l1, l2) separated

by a given distance d at an angle θ. GCMs are constructed by mapping the gray-level co-

occurrence counts or probabilities based on the spatial relations of pixels at different angular

directions (specified by θ) while scanning the image from left-to-right and top-to-bottom.

Due to the fact that neighboring pixels in natural images tend to have nearly the same

values, GCMs tend to have large values along and around the main diagonal, and low values

away from the diagonal.

Based upon normalized GCMs, Haralick et al. [27] [28] proposed several quantities

as measure of texture. The 14 texture measures are : The energy feature, the contrast

feature, the correlation measure, the sum of squares, the inverse difference moment, the sum

average feature, the sum variance feature, the sum entropy feature, entropy, the difference

variance measure, the difference entropy, two information-theoretic measures of correlation

and the maximal correlation coefficient feature. Some of the features defined above have

values much greater than unity, whereas some of the features have values far less than unity.

Normalization to a predefined range, such as [0,1], over the dataset to be analyzed, may be

beneficial.
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Haralick’s measures have been applied for the analysis of texture in several types of

images, including medical images.

3.3 Obtaining Data

The project was performed on 38 mammographic images of 7 subjects. They were classified

into three categories: 14 images from the year of cancer detection, 10 images from first prior

year of detection and 10 images from second prior year of detection. The Ayres-Rangayyan

detection method of architectural distortion [11] was applied into all the 38 images. The

original resolution of the images was 50 µm/pixel which was down sampled to 200 µm/pixel

before applying the Ayres-Rangayyan method.

The whole method consisted of different parts: First the orientation field of the mammo-

graphic images were obtained by using a bank of Gabor filters employed as line detectors.

Gabor filters were used for the detection of linear patterns and the orientation of local texture.

Mammogram exhibit oriented texture due to the presence of normal curvilinear structures

(CLS) (such as fibrograndular tissue, vessels and ducts) as well as spicules in the presence of

spiculated masses or architectural distortion. The CLS of interest (spicules and fibrous tis-

sue) were separated from confounding structures (edge of the pectoral muscle, parenchymal

tissue edges, breast boundary and noise) using the orientation field, the gradient field and

the nonmaximal suppression technique. The selected core CLS pixels and the orientation

field were filtered and down sampled to an effective resolution of 800 µm/pixel to facilitate

efficient phase portrait modeling.

The geometrical patterns in the phase portraits of systems of two, linear, first-order

differential equations can be associated with the patterns encountered in an image presenting

oriented texture. So the filtered and down sampled orientation field was analyzed through

the use of phase portrait. This analysis step produces three maps at the same resolution

as that of the down sampled orientation field: a node map,a saddle map and a spiral map.

Spiral patterns seldom occur in mammograms and was not included in the present study.
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The votes for the two types of phase portrait maps: node or saddle were accumulated and

analyzed to detect peaks that are related to the sites of architectural distortion. The saddle

map was observed to lack discrimination across the mammograms tested, and was eliminated

from further consideration. The result of application of the method is illustrated in figure

1 (a). It can be observed that the node map represents a distinct response at the site of

architectural distortion. But there are other false positive detections also. After getting

the peak indices from the above method, the ROIs surrounding each peak indices were cut

out from each of the 38 images. Figure 1 (b) shows an mammogram depicting all the ROIs

centering the peak indices. The red rectangle in both the images shows the actual area of

architectural distortion. The resolution of the node map is 800 µm/pixel and that of the

breast image is 200 µm/pixel. The actual area of architectural distortion was pointed out

by a radiologist for all the 38 images.

3.4 Study Design

After getting all the ROIs from the Ayres-Rangayyan method, the circular average power

spectrum technique was applied to estimate the fractal dimension [15]. From the three

sets of images, 1062 ROIs were obtained. Figure 2 shows some of the 128 x 128 pixel ROIs

selected randomly from the 1062 ROIs. Table 1 represents the three data sets with total

number of images and selected ROIs.

Data set No of Images No of ROIs

Year of Detection 14 398
First Prior Year of detection 14 386

Second Prior Year of Detection 10 278
Total 38 1062

Table 1: No of images and ROIs in each data set

The steps of the circular average power spectrum method are outlined in figure 3. The

example image is a 128 x 128 pixel mammographic region ( figure 3(a)) . Initially, the two-

dimensional power spectrum of the image was obtained using zero padding and a carefully
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Figure 1: (a)The node map of a left breast image, the blue star (*) sign corresponds to each
peak position and the number corresponding to each peak position represents the strongest
peak in descending order; (b) The mammogram of a left breast showing the ROIs centering
each peak in the image. Size of each ROI is 128 X 128 pixels.

selected window function to ensure better estimation of the power spectrum (figure 3(c)).

For this application, I applied a radial Hanning window suggested before in power spectral

analysis of mammograms due to the low angular dependence of the mammographic spectrum.

Then the 2D power spectrum was transformed into one dimension by linear averaging the

spectrum as a function of the radial distance from the zero frequency. The 1D power spectrum

P (f) represents the average value in the 2D power spectrum for a given radial distance from

the origin or middle of the 2D matrix. The 1D Fourier power spectrum P (f) is related to
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(d) (e) (f)
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Figure 2: Examples of ROIs

the frequency f by the following equation:

P (f) α

(

1

f

)β

(1)

Finally the 1D Fourier power spectrum was plotted on a log-log scale as a function of

the frequency (figure 3(d)). Linear regression was applied on the whole frequency range

(excluding the low and high frequency of the spectrum) on the log-log plot to estimate the

slope β of the fitted line. The estimated slope is linearly related to the fractal dimension of
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Figure 3: (a) A 128 x 128 pixel mammographic region; (b) The result of applying a radial
hanning window to the image of (a); (c) The 2D Fourier spectrum after zero padding the ROI
in (b), zero padded ROI is 256 x 256 pixel; (d) The circular averaged 1D Fourier spectrum
plotted on a log-log scale a a function of the spatial frequency. The linear fit is also shown
with the calculated fractal dimension (FD = 3.0795)

the image [20]:

FD =
8 − β

2
(2)

Then the estimated fractal dimension was evaluated using single feature ROC analysis

to determine if it can discriminate ROIs depicting normal breast parenchyma. The effect of
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ROI size and image resolution was studied in detail. Two different ROI size of 128 x 128

pixels and 64 x 64 pixels were observed at the resolution of 200 µm/pixel. The experiment

was also conducted using 50 µm/pixel resolution image with ROI of 256 x 256 pixels.

After obtaining the fractal dimension, the Haralick’s 14 texture measures were computed

for all the 1062 ROIs of three different sets. For this measure, ROI of 128 x 128 pixels were

used at the resolution of 200 µm/pixel. In order to compute Haralick’s texture measure,

at first the gray-level co-occurrence matrix (GCM) was obtained. Based on the normalized

GCM, the 14 different statistical measures were obtained. Then the texture measures were

evaluated using ROC analysis. A fisher linear discriminant classifier was used.

4 Results

Since previous studies demonstrated that fractal analysis captures differences in the normal

breast parenchyma structure, it is important to quantify how much variability should be

expected in the data set for the normal breast parenchyma with architectural distortion.

The whole experiment was performed for three different sets of data with total 38 images of

7 subjects. The three categories are: 14 images from the year of cancer detection, 10 images

from first prior year of detection and 10 images from second prior year of detection. The

fractal analysis was performed on all the three cases. Two different ROI size of 128 x 128

pixels and 64 x 64 pixels were used at the resolution of 200 µm/pixel. The experiment was

also conducted using 50 µm/pixel resolution image with ROI of 256 x 256 pixels. Table 2

and table 3 show the average fractal dimension and the standard deviation of the value for

both the true positive and false positive cases of 128 x 128 pixel ROI and 64 x 64 pixel ROI

respectively. Table 4 shows the data for the 50 µm/pixel resolution image with ROI 256 x

256 pixel. The tables also represent the normalized distance between the means of the true

positive and false positive ROIs. The normalized distance between the means of the true

positive and false positive ROIs are defined as:
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dn =
|m1 − m2|

σ1 + σ2
(3)

where m1 and m2 are the mean and σ1 and σ2 are the standard deviation of fractal

dimension value of the true positive and false positive ROIs respectively. The measure dn

provides an indicator of the statistical separability of the PDFs. A limitation of dn, however,

is that dn = 0 if m1 = m2 regardless of σ1 and σ2.

True Positive False Positive

Data
Set

Mean

Standard
Devia-
tion

Mean

Standard
Devia-
tion

Normalized
Distance

Year of Detection 3.0558 0.0428 3.0848 0.0617 0.2776
First Prior Year of Detection 3.0421 0.0261 3.0741 0.0521 0.4088

Second prior Year of Detection 3.0495 0.0396 3.0553 0.0612 0.0576

Table 2: Mean, standard deviation and normalized distance of fractal dimension for ROI
128 x 128 pixel at 200 µm/pixel resolution

True Positive False Positive

Data
Set

Mean

Standard
Devia-
tion

Mean

Standard
Devia-
tion

Normalized
Distance

Year of Detection 2.9169 0.038 2.9376 0.0632 0.2045
First Prior Year of Detection 2.9029 0.0374 2.924 0.0595 0.2176

Second prior Year of Detection 2.9014 0.0403 2.8948 0.0789 0.0555

Table 3: Mean, standard deviation and normalized distance of fractal dimension for ROI 64
x 64 pixel at 200 µm/pixel resolution

The results shows that overall, the average fractal dimension of the normal ROIs were

statistically significantly lower than that of the ROIs with architectural distortion. This

result was consistent across almost all the data sets studied with 200 µm/pixel. This op-

poses the result obtained by Tourassi et al. [15]. They observed that the average fractal

dimension of the normal ROIs were statistically significantly higher than that of the ROIs

with architectural distortion using resolution of 50 µm/pixel. So in order to compare, the
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True Positive False Positive

Data
Set

Mean

Standard
Devia-
tion

Mean

Standard
Devia-
tion

Normalized
Distance

Year of Detection 3.3416 0.0354 3.3456 0.0671 0.0391
First Prior Year of Detection 3.3450 0.0379 3.3357 0.0639 0.0919

Second prior Year of Detection 3.3508 0.0329 3.3486 0.0723 0.0176

Table 4: Mean, standard deviation and normalized distance of fractal dimension for ROI
256 x 256 pixel at 50 µm/pixel resolution

experiment was also done at 50 µm/pixel. But at this resolution the result was not signifi-

cantly distinguishable between the normal ROIs and the ROIs with architectural distortion.

The difference of the results from that of Tourassi et al. [15] might have occurred due to

several reasons. In their experiment they used the original image of 50 µm/pixel resolution

and they selected their normal ROIs randomly from the data set. But for this project, the

ROIs were obtained after phase portrait modeling and detection of peak points of probable

architectural distortion areas. The peak locations were further used to cut out the ROIs from

breast image. Although for a given set of data a constant ROI size was used (for example

128 x 128 pixel), for some of the peak locations which were situated at the edge of the breast,

the ROI size was smaller than the defined one. Tourassi et al. [15] applied the zeropadding

and radial Hanning window to the ROIs respectively. But for the present project, at first

the radial Hanning window was applied to the ROIs and then it was zeropadded while per-

forming the 2D Fourier transform. Furthermore, the normal ROIs used for the experiments

had ducts and vessels present in the images which might have not been included in the ROIs

those they had selected. Moreover, they applied linear regression on the whole frequency

range except the DC component of the spectrum. Here I applied linear regression without

considering the low and high frequency range. Because the high and low frequency range of

the power spectrum may lead to biased estimates of the parameter β.

Afterward, the estimated fractal dimension was evaluated using single feature ROC anal-

ysis. For a resolution of 200 µm/pixel and with 128 x 128 pixel ROI, the best ROC perfor-
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mance achieved was 0.7357 for the first prior year of detection cases. The ROC curve for

this set of data is shown in figure 4(a).
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Figure 4: The ROC curve for the first prior year of detection at 200 µm/pixel with ROI of
128 x 128 pixel (a) Result of fractal analysis, Az = 0.7357 (b) Result of Haralick’s Texture
measure, Az = 0.6962

Haralick’s texture measure was also applied on the three sets of data. The performance

was evaluated using ROC analysis. A fisher linear discriminant classifier was used. Figure

4(b) shows the ROC curve for the cases of first prior year of detection. Table 5 and 6

represent the area of the ROC curve for different cases of fractal analysis and Haralick’s

texture measure. It is seen from these tables that for the first prior year of cancer detection

cases, ROC performance achieved was 0.7357 with the fractal analysis and 0.6962 with

Haralick’s texture measure. These results suggest that monitoring the relative change of the

fractal dimension across mammographic image could be a promising strategy for architectural

distortion.
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Az at 200 µm/pixel Az at 50 µm/pixel

Data
Set

ROI 64
x 64
pixel

ROI 128
x 128
pixel

ROI 256
x 256
pixel

Year of Detection 0.6354 0.68 0.5604
First Prior Year of Detection 0.6673 0.7357 0.5238

Second prior Year of Detection 0.5367 0.5381 0.5192

Table 5: The area under ROC curve for different cases of fractal analysis

Data
Set

Area of
ROC
curve

Year of Detection 0.7341
First Prior Year of Detection 0.6962

Second prior Year of Detection 0.6542

Table 6: The area under ROC curve for different cases of Haralick’s texture features at 200
µm/pixel with 128 x 128 pixel ROI

5 Discussion

Fractal analysis of mammograms has received attention mainly for two tasks: breast parenchy-

mal density assessment and the diagnostic characterization of calcifications and masses. In

this project, I have explored the feasibility of applying the fractal analysis for the auto

mated detection of architectural distortion, an understudied yet highly malignant breast

abnormality. Since there are a wide range of methods to estimate the fractal dimension of

an image (each capturing different image properties), it is noted that any conclusions drawn

are relevant to the specific power spectrum estimation method employed in this study.

Since normal breast parenchyma is known to display fractal properties, the study tested

if the fractal dimension could discriminate mammographic areas with architectural distor-

tion from those depicting normal breast parenchyma. Architectural distortion as such is

not a mass but rather a local disruption of the normal breast tissue pattern. This study

demonstrated that the presence of architectural distortion disrupts the statistical properties

of the normal breast parenchymal structure, resulting in a higher fractal dimension.

For the project, three different sets with 1062 ROIs were used. From, the ROC analysis it
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was found that the cases of first prior year of detection showed significantly good performance

of Az = 0.7357 at 200 µm/pixel with 128 x 128 pixel ROI. Though the result of the cases with

second prior year of detection was not that significant. The performance was also affected

by the image resolution. The images at 200 µm/pixel resolution gave the best results.

Furthermore, the performance result was compared with Haralick’s texture measure. An

area of Az = 0.6962 was found at 200 µm/pixel with 128 x 128 pixel ROI. The Haralick’s

measure gave significantly good performance of Az = 0.6542 for the cases of second prior

year of detection than the fractal analysis where area of ROC curve was found Az = 0.5381.

6 Conclusion

Fractal dimension measurement on digitized mammograms appear to be a promising way to

assess locally the presence of architectural distortion. The present study was a continuation

of the Ayres-Rangayyan [11] technique. The goal was to reduce the number of false positive

detection. The aspect of applying the fractal analysis using circular average power spectrum

technique and Haralick’s texture measure in reducing the number of false positives was

studied. And the study gave quite promising results for future implementation. So, in

future I would like to observe the performance of fractal dimension and Haralick’s features

together to obtain the ROC curve. Other texture measures like Law’s texture measure

can also be included in the features. In order to compare the results of Ayres-Rangayyan

method with my study, I would also like to perform the free-response receiver operating

characteristics (FROC) analysis. Thus development of CAD techniques dedicated to the

detection and localization of architectural distortion should lead to efficient detection of

early signs of breast cancer.
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